Startseite Global modeling for elevated temperature flow behavior of 6013 aluminum alloy during two-pass deformation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Global modeling for elevated temperature flow behavior of 6013 aluminum alloy during two-pass deformation

  • Gang Xiao , Qinwen Yang , Luoxing Li und Huan He
Veröffentlicht/Copyright: 26. Februar 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Two-pass hot plane strain compression tests of 6013 aluminum alloy were conducted at different temperatures, strain rates, and holding times. Using the experimental data, four popular metamodel types – Kriging, radial basis function, polynomial regression and artificial neural network – were investigated as potential methods for global modeling of the flow behavior during two-pass deformation. The global model developed from the Kriging method was superior in terms of the accuracy and stability of the prediction. Furthermore, this model was successfully used to predict not only the two-pass deformation behavior beyond the experimental conditions, but also the multipass deformation behavior. It is proved that the Kriging method is an effective and reliable approach to develop a global model for optimization of the hot forming process.


*Correspondence address, Luoxing Li, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, 410082 Changsha, China. Tel./Fax: +86 731 88821571, E-mail:

References

[1] B.Fang, Z.Ji, M.Liu, G.F.Tian, C.C.Jia, T.T.Zeng, B.F.Hu, C.C.Wang: Mater. Sci. Eng. A590 (2014) 255261. 10.1016/j.msea.2013.10.034Suche in Google Scholar

[2] S.Billard, J.P.Fondère, B.Bacroix, G.F.Dirras: Acta Mater.54 (2006) 411421. 10.1016/j.actamat.2005.09.012Suche in Google Scholar

[3] E.Evangelista, M.Masini, M.E.Mehtedi, S.Spigarelli: J. Alloys Compd.378 (2004) 151154. 10.1016/j.jallcom.2003.11.170Suche in Google Scholar

[4] G.R.Ebrahimi, H.Keshmiri, M.Mazinani, A.Maldar, M.Haghshenas: Mater. Sci. Eng. A559 (2013) 520527. 10.1016/j.msea.2012.08.136Suche in Google Scholar

[5] H.Ding, K.Hirai, S.Kamado: Mater. Sci. Eng. A527 (2010) 33793385. 10.1016/j.msea.2010.02.068Suche in Google Scholar

[6] Y.C.Lin, L.T.Li, Y.C.Xia: Comput. Mater. Sci.50 (2011) 20382043. 10.1016/j.commatsci.2011.02.004Suche in Google Scholar

[7] J.Liu, Y.G.Liu, H.Lin, M.Q.Li: Mater. Sci. Eng. A565 (2013) 126131. 10.1016/j.msea.2012.11.116Suche in Google Scholar

[8] F.L.Jiang, H.Zhang, L.X.Li, J.H.Chen: Mater. Sci. Eng. A552 (2012) 269275. 10.1016/j.msea.2012.05.039Suche in Google Scholar

[9] M.H.Maghsoudi, A.Zarei-Hanzaki, P.Changizian, A.Marandi: Mater. Des.57 (2014) 487493. 10.1016/j.matdes.2013.12.051Suche in Google Scholar

[10] H.S.Park, X.P.Dang: Comput.-Aided Des.42 (2010) 889902. 10.1016/j.cad.2010.06.003Suche in Google Scholar

[11] G.G.Wang, S.Shan: J. Mech. Des.129 (2007) 370380. 10.1115/1.2429697Suche in Google Scholar

[12] D.Zhao, D.Xue: Struct. Multidiscip. Optim.42 (2010) 923938. 10.1007/s00158-010-0529-3Suche in Google Scholar

[13] G.Matheron: Econ. Geol.58 (1963) 12461266. 10.2113/gsecongeo.58.8.1246Suche in Google Scholar

[14] J.Sacks, W.J.Welch, T.J.Mitchell, H.P.Wynn: Stat. Sci.4 (1989) 409435. 10.1214/ss/1177012413Suche in Google Scholar

[15] S.N.Lophaven, H.B.Nielsen, J.Søndergaard: “Dace: a Matlab Kriging toolbox, version 2.0.” Tech. Rep. IMMREP-2002 – 12, Technical University of Denmark, Kongens Lyngby, Denmark (2002).Suche in Google Scholar

[16] M.J.D.Powell, in: J.C.Mason, M.G.Cox (Eds.), Algorithms for Approximation, Clarendon Press, Oxford (1987) 143167.Suche in Google Scholar

[17] R.H.Myers, D.C.Montgomery: Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons, New York (1995).Suche in Google Scholar

[18] N.Haghdadi, A.Zarei-Hanzaki, A.R.Khalesian, H.R.Abedi: Mater. Des.49 (2013) 386391. 10.1016/j.matdes.2012.12.082Suche in Google Scholar

[19] H.Y.Li, X.F.Wang, D.D.Wei, J.D.Hu, Y.H.Li: Mater. Sci. Eng. A536 (2012) 216222. 10.1016/j.msea.2011.12.108Suche in Google Scholar

[20] K.I.Wong, P.K.Wong, C.S.Cheung, C.M.Vong: Appl. Soft Comput.13 (2013) 44284441. 10.1016/j.asoc.2013.06.006Suche in Google Scholar

[21] B.J.Chen, E.H.Zheng, Q.N.Wang, L.Wang: Neurocomputing149 Part B (2015) 585593. 10.1016/j.neucom.2014.08.016Suche in Google Scholar

[22] G.Gong: J. Am. Stat. Assoc.81 (393) (1986) 108113. 10.1080/01621459.1986.10478245Suche in Google Scholar

[23] M.G.Dong, N.Wang: Appl. Math. Model.35 (2011) 10241035. 10.1016/j.apm.2010.07.048Suche in Google Scholar

[24] G.Xiao, Q.Yang, L.Li, Z.Xu: Math. Probl. Eng. 2015, Article ID157892 (2015) 18. 10.1155/2015/157892Suche in Google Scholar

Received: 2015-08-06
Accepted: 2015-10-23
Published Online: 2016-02-26
Published in Print: 2016-03-11

© 2016, Carl Hanser Verlag, München

Heruntergeladen am 17.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111339/pdf
Button zum nach oben scrollen