Home Global modeling for elevated temperature flow behavior of 6013 aluminum alloy during two-pass deformation
Article
Licensed
Unlicensed Requires Authentication

Global modeling for elevated temperature flow behavior of 6013 aluminum alloy during two-pass deformation

  • Gang Xiao , Qinwen Yang , Luoxing Li and Huan He
Published/Copyright: February 26, 2016
Become an author with De Gruyter Brill

Abstract

Two-pass hot plane strain compression tests of 6013 aluminum alloy were conducted at different temperatures, strain rates, and holding times. Using the experimental data, four popular metamodel types – Kriging, radial basis function, polynomial regression and artificial neural network – were investigated as potential methods for global modeling of the flow behavior during two-pass deformation. The global model developed from the Kriging method was superior in terms of the accuracy and stability of the prediction. Furthermore, this model was successfully used to predict not only the two-pass deformation behavior beyond the experimental conditions, but also the multipass deformation behavior. It is proved that the Kriging method is an effective and reliable approach to develop a global model for optimization of the hot forming process.


*Correspondence address, Luoxing Li, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, 410082 Changsha, China. Tel./Fax: +86 731 88821571, E-mail:

References

[1] B.Fang, Z.Ji, M.Liu, G.F.Tian, C.C.Jia, T.T.Zeng, B.F.Hu, C.C.Wang: Mater. Sci. Eng. A590 (2014) 255261. 10.1016/j.msea.2013.10.034Search in Google Scholar

[2] S.Billard, J.P.Fondère, B.Bacroix, G.F.Dirras: Acta Mater.54 (2006) 411421. 10.1016/j.actamat.2005.09.012Search in Google Scholar

[3] E.Evangelista, M.Masini, M.E.Mehtedi, S.Spigarelli: J. Alloys Compd.378 (2004) 151154. 10.1016/j.jallcom.2003.11.170Search in Google Scholar

[4] G.R.Ebrahimi, H.Keshmiri, M.Mazinani, A.Maldar, M.Haghshenas: Mater. Sci. Eng. A559 (2013) 520527. 10.1016/j.msea.2012.08.136Search in Google Scholar

[5] H.Ding, K.Hirai, S.Kamado: Mater. Sci. Eng. A527 (2010) 33793385. 10.1016/j.msea.2010.02.068Search in Google Scholar

[6] Y.C.Lin, L.T.Li, Y.C.Xia: Comput. Mater. Sci.50 (2011) 20382043. 10.1016/j.commatsci.2011.02.004Search in Google Scholar

[7] J.Liu, Y.G.Liu, H.Lin, M.Q.Li: Mater. Sci. Eng. A565 (2013) 126131. 10.1016/j.msea.2012.11.116Search in Google Scholar

[8] F.L.Jiang, H.Zhang, L.X.Li, J.H.Chen: Mater. Sci. Eng. A552 (2012) 269275. 10.1016/j.msea.2012.05.039Search in Google Scholar

[9] M.H.Maghsoudi, A.Zarei-Hanzaki, P.Changizian, A.Marandi: Mater. Des.57 (2014) 487493. 10.1016/j.matdes.2013.12.051Search in Google Scholar

[10] H.S.Park, X.P.Dang: Comput.-Aided Des.42 (2010) 889902. 10.1016/j.cad.2010.06.003Search in Google Scholar

[11] G.G.Wang, S.Shan: J. Mech. Des.129 (2007) 370380. 10.1115/1.2429697Search in Google Scholar

[12] D.Zhao, D.Xue: Struct. Multidiscip. Optim.42 (2010) 923938. 10.1007/s00158-010-0529-3Search in Google Scholar

[13] G.Matheron: Econ. Geol.58 (1963) 12461266. 10.2113/gsecongeo.58.8.1246Search in Google Scholar

[14] J.Sacks, W.J.Welch, T.J.Mitchell, H.P.Wynn: Stat. Sci.4 (1989) 409435. 10.1214/ss/1177012413Search in Google Scholar

[15] S.N.Lophaven, H.B.Nielsen, J.Søndergaard: “Dace: a Matlab Kriging toolbox, version 2.0.” Tech. Rep. IMMREP-2002 – 12, Technical University of Denmark, Kongens Lyngby, Denmark (2002).Search in Google Scholar

[16] M.J.D.Powell, in: J.C.Mason, M.G.Cox (Eds.), Algorithms for Approximation, Clarendon Press, Oxford (1987) 143167.Search in Google Scholar

[17] R.H.Myers, D.C.Montgomery: Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons, New York (1995).Search in Google Scholar

[18] N.Haghdadi, A.Zarei-Hanzaki, A.R.Khalesian, H.R.Abedi: Mater. Des.49 (2013) 386391. 10.1016/j.matdes.2012.12.082Search in Google Scholar

[19] H.Y.Li, X.F.Wang, D.D.Wei, J.D.Hu, Y.H.Li: Mater. Sci. Eng. A536 (2012) 216222. 10.1016/j.msea.2011.12.108Search in Google Scholar

[20] K.I.Wong, P.K.Wong, C.S.Cheung, C.M.Vong: Appl. Soft Comput.13 (2013) 44284441. 10.1016/j.asoc.2013.06.006Search in Google Scholar

[21] B.J.Chen, E.H.Zheng, Q.N.Wang, L.Wang: Neurocomputing149 Part B (2015) 585593. 10.1016/j.neucom.2014.08.016Search in Google Scholar

[22] G.Gong: J. Am. Stat. Assoc.81 (393) (1986) 108113. 10.1080/01621459.1986.10478245Search in Google Scholar

[23] M.G.Dong, N.Wang: Appl. Math. Model.35 (2011) 10241035. 10.1016/j.apm.2010.07.048Search in Google Scholar

[24] G.Xiao, Q.Yang, L.Li, Z.Xu: Math. Probl. Eng. 2015, Article ID157892 (2015) 18. 10.1155/2015/157892Search in Google Scholar

Received: 2015-08-06
Accepted: 2015-10-23
Published Online: 2016-02-26
Published in Print: 2016-03-11

© 2016, Carl Hanser Verlag, München

Downloaded on 17.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111339/pdf
Scroll to top button