Home Technology Piezo-absorbing effect of microwave absorbing composites with carbonyl iron particles as the filler
Article
Licensed
Unlicensed Requires Authentication

Piezo-absorbing effect of microwave absorbing composites with carbonyl iron particles as the filler

  • Chengmao Zhang , Ting Liu and Yonggang Xu
Published/Copyright: October 15, 2015

Abstract

A new piezo-absorbing composite was fabricated with silicone rubber and spherical or flaky carbonyl iron particles (CIPs). The complex permittivity and permeability of the composites, under variable compressive strain, were measured using a vector network analyzer in the frequency of 2–18 GHz and the reflection loss (RL) calculated to test the piezo-absorbing effect. The results show that, under compressive strain, the complex permittivity decreased slightly because of the breakdown of the original conductive network, whereas the complex permeability increased, but the enhancement mechanism was different. In the case of spherical CIPs/rubber composite, this was caused by the surface effect of the absorbents, and in the case of flaky CIPs/rubber composite by the orientation of the flaky particles. As the compressive strain was applied, the RL value and the absorbing band changed slightly with thickness of 1 mm or 2 mm. As the applied strains decreased the thickness of the composites, the absorption band (RL < −10 dB) broadened and the minimum RL decreased.


*Correspondence address, Yonggang Xu, School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China, Tel.: +861082339604, Fax: +861082316603, E-mail:

References

[1] Y.C.Qing, W.C.Zhou, F.Luo, D.M.Zhu: Mater. Rev. 23 (2009) 1.Search in Google Scholar

[2] Y.B.Feng, T.Qiu, X.Y.Li, C.Y.Shen: Mater. Sci. Technol. 16 (2008) 589.Search in Google Scholar

[3] R.C.Che, L.M.Peng, X.F.Duan, Q.Chen, X.L.Liang: Adv. Mater. 16 (2004) 401. 10.1002/adma.200306460Search in Google Scholar

[4] Y.C.Qing, W.C.Zhou, F.Luo, D.M.Zhu: Carbon48 (2010) 4074. 10.1016/j.carbon.2010.07.014Search in Google Scholar

[5] C.S.Park, X.Z.Jin, N.Y.Ki, Y.R.Park, Y.Shon, N.K.Min: Appl. Phys. Lett. 100 (2012) 192409. 10.1063/1.3675877Search in Google Scholar

[6] J.H.Shen, K.Y.Chen, L.C.Li, W.X.Wang, Y.Jin: J. Alloys Compd. 615 (2014) 488. 10.1016/j.jallcom.2014.06.096Search in Google Scholar

[7] J.H.Shen, K.Y.Chen, L.C.Li, Y.Ding, J.B.Li, W.Q.Kong: Sci. China Ser. E: Technol. Sci. 57 (2014) 1858. 10.1007/s11431-014-5617-ySearch in Google Scholar

[8] J.H.Shen, J.T.Feng, L.C.Li, G.X.Tong, Y.B.He: J. Alloys Compd. 632 (2015) 490. 10.1016/j.jallcom.2015.01.187Search in Google Scholar

[9] M.J.Jiang, Z.M.Dang, H.P.Xu: Appl. Phys. Lett. 90 (2007) 042914. 10.1063/1.2432232Search in Google Scholar

[10] L.H.Wang, T.H.Ding, P.Wang: Sens. Actuators A135 (2007): 587. 10.1016/j.sna.2006.10.019Search in Google Scholar

[11] Y.G.Xu, L.M.Yuan, J.Cai, D.Y.Zhang: J. Magn. Magn. Mater. 343 (2013) 239. 10.1016/j.jmmm.2013.04.051Search in Google Scholar

[12] B.S.Zhang, Y.Feng, J.Xiong, Y.Yang, H.X.Lu: IEEE. Trans. Magn. 42 (2006) 1778. 10.1109/TMAG.2006.871373Search in Google Scholar

[13] Y.C.Qing, W.C.Zhou, F.Luo, D.M.Zhu: J. Magn. Magn. Mater. 321 (2009) 25. 10.1016/j.jmmm.2008.07.011Search in Google Scholar

[14] T.L.Gilbert: IEEE. Trans. Magn. 40 (2004) 3443. 10.1109/TMAG.2004.836740Search in Google Scholar

[15] D.S.Xue, F.S.Li, X.L.Fan, F.S.Wen: Chin. Phys. Lett. 25 (2008) 4120. 10.1088/0256-307X/25/11/077Search in Google Scholar

[16] R.Han, J.Q.Wei, X.H.Han, H.B.Yi, T.Wang, F.S.Li: Chinese. Sci. Bull. 55 (2010) 2570. 10.1007/s11434-009-0585-5Search in Google Scholar

[17] D.R.Iosif, V.H.Suong: Carbon47 (2009) 1958. 10.1016/j.carbon.2009.03.039Search in Google Scholar

[18] R.K.Gaurav, P.Sven, G.Andreas, P.Petra, H.Gert: Polymer51 (2010) 2708. 10.1016/j.polymer.2010.02.048Search in Google Scholar

[19] M.Hussain, Y.H.Choa, K.Niihara: Composites Part A32 (2001) 1689. 10.1016/S1359-835X(01)00035-5Search in Google Scholar

[20] K.N.Rozanov, A.V.Osipov, D.A.Petrov, S.N.Starostenko, E.P.Yelsukov: J. Magn. Magn. Mater. 321 (2009) 738. 10.1016/j.jmmm.2008.11.039Search in Google Scholar

[21] D.T.Zimmerman, J.D.Cardellino, K.T.Cravener, K.R.Feather, N.M.Miskovsky, G.J.Weisel: Appl. Phys. Lett. 93 (2008) 214103. 10.1063/1.3036900Search in Google Scholar

[22] A.H.Sihvola: IEEE Trans. Geosci. Remote Sens. 27 (1989) 403. 10.1109/36.29560Search in Google Scholar

[23] L.Z.Wu, J.Ding, H.B.Jiang, L.F.Chen, C.K.Ong: J. Magn. Magn. Mater. 285 (2005) 233. 10.1016/j.jmmm.2004.07.034Search in Google Scholar

[24] T.Liu, P.H.Zhou, J.L.Xie, L.J.Deng: J. Magn. Magn. Mater. 324 (2012) 519. 10.1016/j.jmmm.2011.08.031Search in Google Scholar

[25] S.S.Kim, S.B.Jo, K.I.Gueon, K.K.Choi, J.M.Kim, K.S.Churn: IEEE Trans. Magn. 27 (1991) 5462. 10.1109/20.104992Search in Google Scholar

Received: 2014-12-29
Accepted: 2015-05-20
Published Online: 2015-10-15
Published in Print: 2015-10-14

© 2015, Carl Hanser Verlag, München

Downloaded on 1.1.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.111281/html
Scroll to top button