Quick fabrication of appropriate morphology and composition CoFe films with desirable microwave properties
-
BaoYu Zong
, YuPing Wu , Nguyen Nguyen Phuoc , Pin Ho , JinJun Qiu , Yi Yang , Miao Jun Chua , Wei Beng Ng , YunJie Chen and GuChang Han
Abstract
A methodology to quickly prepare CoFe nanofilms with large magnetic permeability and resonance frequency from simple salt solutions is demonstrated. As the microwave properties of thin films are largely determined by their surface morphology and composition, CoFe film with unique morphology and composition is proposed based on theoretical analysis and subsequently electrodeposited with suitable parameters. This approach reveals that FexCo1-x (0.3 < x < 0.5 in atomic ratio) films consisting of sub-30 nm spherical nanoparticles, even in the form of bigger aggregated-nanoparticles, usually show a low coercivity (≤4240 A · m−1), moderate magnetic anisotropy (2900–8580 A · m−1), and high magnetic moment (≥1.4 T), permeability (>200) as well as resonance frequency (>1 GHz). Further experimental analyses show root causes of the phenomena. This methodology also provides useful references to rapidly identify microwave properties of thin films from their surface morphologies and main electrodeposition parameters.
References
[1] N.Setter: Electroceramic-based MEMS. Springer Science+Business Media, Inc, USA (2005). 10.1007/b101200Search in Google Scholar
[2] N.Maluf, K.Williams: An Introduction to microelectromechanical systems engineering, 2nd Edn., Artech House, U.K. (2004).Search in Google Scholar
[3] D.Hunter, W.Osborn, K.Wang, N.Kazantseva, J.Hattrick-Simpers, R.Suchoski, R.Takahashi, M.L.Young, A.Mehta, L.A.Bendersky, S.E.Lofland, M.Wuttig, I.Takeuchi: Nature Commun. 2 (2011) 518. 10.1038/ncomms1529.Search in Google Scholar
[4] M.Frommberger, A.Ludwig, A.Sehrbrock, E.Quandt: IEEE Trans. Magn. 39 (2003) 3166. 10.1109/TMAG.2003.816045Search in Google Scholar
[5] M.A.S.M.Haniff, H.W.Lee, D.C.S.Bien, I.H.A.Azid, M.W.Le, S.S.Embong: Thin Solid Films550 (2014) 22. 10.1016/j.tsf.2013.10.020Search in Google Scholar
[6] A.Kumar, P.C.Srivastava: J. Exp. Nanosci. 10 (2015) 803. 10.1080/17458080.2014.902543.Search in Google Scholar
[7] W.Lu, P.Huang, C.H.He, B.Yan: Int. J. Electrochem. Sci. 8 (2013) 914.Search in Google Scholar
[8] J.Zarpellon, H.F.Jurca, N.Mattoso, J.J.Klein, W.H.Schreiner, J.D.Ardisson, W.A.A.Macedo, D.H.Mosca: J. Colloid Interf. Sci. 316 (2007) 510. 10.1016/j.jcis.2007.08.032Search in Google Scholar PubMed
[9] W.N.Yu, J.A.Bain, Y.G.Peng, D.E.Laughlin: IEEE Trans. Magn. 38 (2002) 3030. 10.1109/TMAG.2002.802126Search in Google Scholar
[10] L.Guo, G.Oskam, A.Radisic, P.M.Hoffmann, P.C.Searson: J. Phys. D: Appl. Phys. 44 (2011) 443001. 10.1088/0022-3727/44/44/443001.Search in Google Scholar
[11] M.Schlesinger, M.Paunovic: Modern electroplating. 5th Ed., John Wiley & Sons Ltd, Weinheim, Germany (2010). 10.1002/9780470602638Search in Google Scholar
[12] A.Mardana, S.Ducharme, S.Adenwalla: Nano Lett. 11 (2011) 3862. 10.1021/nl201965rSearch in Google Scholar PubMed
[13] G.Herzer: IEEE Trans. Magn. 26 (1990) 1397. 10.1109/20.104389Search in Google Scholar
[14] F.M.F.Rhen, S.Roy: IEEE Trans. Magn. 44 (2008) 3917. 10.1109/TMAG.2008.2002254Search in Google Scholar
[15] B.Y.Zong, Z.W.Pong, Y.P.Wu, P.Ho, J.J.Qiu, L.B.Kong, L.Wang, G.C.Han: J. Mater. Chem. 21 (2011) 16042. 10.1039/c1jm13398eSearch in Google Scholar
[16] Z.Turgut, J.H.Scott, M.Q.Huang, S.A.Majetich, M.E.McHenry: J. Appl. Phys. 83 (1998) 6468. 10.1063/1.367922Search in Google Scholar
[17] S.H.Jung, J.W.Yeon, K.Song: J. Solid State Electrochem. 18 (2014) 333. 10.1007/s10008-013-2357-zSearch in Google Scholar
[18] Z.He, J.A.Koza, G.J.Mu, A.S.Miller, E.W.Bohannan, J.A.Switzer: Chem. Mater. 25 (2013) 223. 10.1021/cm302823fSearch in Google Scholar
[19] G.Z.Chai, D.W.Guo, X.L.Fan, D.S.Xue: Sci. China Phys. Mech. Astron. 54 (2011) 1200. 10.1007/s11433-011-4356-3Search in Google Scholar
[20] N.Zech, E.J.Podlaha, D.Landolt: J. Appl. Electrochem. 28 (1998) 1251. 10.1023/A:1003416328942Search in Google Scholar
[21] J.K.Dong, Y.Tokiwa, S.L.Bud'ko, P.C.Canfield, P.Gegenwart: Phys. Rev. Lett. 110 (2013) 176402. 10.1103/PhysRevLett.110.176402Search in Google Scholar PubMed
[22] F.M.F.Rhen, P.McCloskey, T.O’Donnell, S.Roy: J. Magn. Magn. Mater. 320 (2008) 819. 10.1016/j.jmmm.2008.04.133Search in Google Scholar
[23] B.Y.Zong, G.C.Han, J.J.Qiu, Z.B.Guo, L.Wang, W.K.Yeo, B.Liu: Res. Lett. Phys. Chem. 2008 (2008) Article ID 342976. 10.1155/2008/342976.Search in Google Scholar
[24] O.Acher, S.Dubourg: A generalization of Snoek's law to ferromagnetic films and composites, CEA Le Ripault, BP16:37260 Monts, France (2007) 1–22.Search in Google Scholar
[25] Y.Liu, D.J.Sellmyer, D.Shindo: Handbook of advanced magnetic materials, Spin 11097730, Springer Verlag, New York (2006) 418–455. 10.1007/b115335Search in Google Scholar
[26] S.X.Wang, N.X.Sun, M.Yamaguchi, S.Yabukami: Nature407 (2000) 150. 10.1038/35025140Search in Google Scholar
[27] P.S.Fodor, G.M.Tsoi, L.E.Wenger: J. Appl. Phys. 91 (2002) 8186. 10.1063/1.1449450Search in Google Scholar
[28] E.F.Kneller, F.E.Luborsky: J. Appl. Phys. 34 (1963) 656. 10.1063/1.1729324Search in Google Scholar
[29] S.R.Brankovic, X.M.Yang, T.J.Klemmer, M.Seigler: IEEE Trans. Magn. 42 (2006) 132. 10.1109/TMAG.2005.861778Search in Google Scholar
[30] Y.H.Zhang, D.G.Ivey: Chem. Mater. 16 (2004) 1189. 10.1021/cm0305507Search in Google Scholar
[31] N.Zech, E.J.Podlaha, D.Landolt: J. Electrochem. Soc. 146 (1999) 2892. 10.1149/1.1392024Search in Google Scholar
[32] N.Zech, E.J.Podlaha, D.Landolt: J. Electrochem. Soc. 146 (1999) 2886. 10.1149/1.1392024Search in Google Scholar
[33] S.R.Brankovic, S.E.Bae, D.Litvinov: Electrochim. Acta53 (2008) 5934. 10.1016/j.electacta.2008.03.071Search in Google Scholar
[34] W.Schwarzacher: J. Phys. Condens. Matter. 16 (2004) R859. 10.1088/0953-8984/16/26/R01Search in Google Scholar
[35] M.Lelental: J. Electrochem. Soc. 120 (1973) 1650. 10.1149/1.2403322Search in Google Scholar
[36] U.Holzwarth, N.Gibson: Nature Nanotech. 6 (2011) 534. 10.1038/nnano.2011.145Search in Google Scholar PubMed
[37] T.Bitoh, A.Makino, A.Inoue, T.Masumoto: Mater. Trans. 44 (2003) 2011. 10.2320/matertrans.44.2011Search in Google Scholar
[38] S.M.Abbasi, A.Momeni, M.Morakkabati, R.Mahdavi: Int. J. Mater. Res. 105 (2014) 755. 10.3139/146.111078Search in Google Scholar
© 2015, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- On the widths of the hysteresis of mechanically and thermally induced martensitic transformations in Ni–Ti-based shape memory alloys
- The effects of external compressive stress on the kinetics of low temperature bainitic transformation and microstructure in a superbainite steel
- The effect of compressing pressure on the microstructure and properties of W-10 wt.% Cu composite
- Simulation of dendritic growth of Al-4 wt.% Cu alloy from an undercooled melt
- Effects of contact pressure and sliding distance on the lubricated friction and wear properties of Zn-25Al-3Cu alloy: A comparative study with SAE 65 bronze
- Electrochemical behaviour of stainless steel in acidic fluoride media
- Quick fabrication of appropriate morphology and composition CoFe films with desirable microwave properties
- Piezo-absorbing effect of microwave absorbing composites with carbonyl iron particles as the filler
- Nanocomposite based on polyaniline emeraldine-base and α-Al2O3: A structural characterization
- Effect of Cr3C2 content on the microstructure and properties of Mo2NiB2-based cermets
- Short Contributions
- Damage mechanisms in aluminum-matrix composites reinforced with nano-alumina particles
- Synthesis of ultrafine powder of vanadium carbide V8C7 by microwave heating
- People
- Prof. Dr. Werner Skrotzki on the occasion of his 65th birthday
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- On the widths of the hysteresis of mechanically and thermally induced martensitic transformations in Ni–Ti-based shape memory alloys
- The effects of external compressive stress on the kinetics of low temperature bainitic transformation and microstructure in a superbainite steel
- The effect of compressing pressure on the microstructure and properties of W-10 wt.% Cu composite
- Simulation of dendritic growth of Al-4 wt.% Cu alloy from an undercooled melt
- Effects of contact pressure and sliding distance on the lubricated friction and wear properties of Zn-25Al-3Cu alloy: A comparative study with SAE 65 bronze
- Electrochemical behaviour of stainless steel in acidic fluoride media
- Quick fabrication of appropriate morphology and composition CoFe films with desirable microwave properties
- Piezo-absorbing effect of microwave absorbing composites with carbonyl iron particles as the filler
- Nanocomposite based on polyaniline emeraldine-base and α-Al2O3: A structural characterization
- Effect of Cr3C2 content on the microstructure and properties of Mo2NiB2-based cermets
- Short Contributions
- Damage mechanisms in aluminum-matrix composites reinforced with nano-alumina particles
- Synthesis of ultrafine powder of vanadium carbide V8C7 by microwave heating
- People
- Prof. Dr. Werner Skrotzki on the occasion of his 65th birthday
- DGM News
- DGM News