Startseite Influence of bath temperature and pH on the structure of electrodeposited cobalt nanowires
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Influence of bath temperature and pH on the structure of electrodeposited cobalt nanowires

  • Tahir Mehmood , Babar Shahzad Khan , Aiman Mukhtar und Ming Tan
Veröffentlicht/Copyright: 10. September 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

To fully understand the mechanism of forming fcc Co in electrodeposition, the effect of bath temperature and pH on the structure of electrodeposited Co nanowires is studied by means of X-ray diffraction and scanning electron microscopy. At −3.0 V and pH 2.5, the fraction of fcc Co decreases with increasing temperature, ranging from 1 (25 °C, pure fcc Co) to 0 (45 °C, pure hcp Co). The formation of hcp Co can be attributed to larger critical clusters formed at higher temperatures. The pH value has no appreciable effect on the formation of fcc Co nanowires. This is because the H adatoms produced at the cathodic surface can penetrate quickly through the thin Au film and desorb into air.


*Correspondence address, Professor Dr. Ming Tan, College of Physical Science and Technology, Central China Normal University, Luo Yu Lu 152, Wuhan 430079, China, Tel.: +86 027 67867948, Fax: +86 027 67861185, E-mail:

References

[1] S.Nakahara, S.Mahajan: J. Electrochem. Soc.127 (1980) 283. 10.1149/1.2129656Suche in Google Scholar

[2] T.Mehmood, B. ShahzadKhan, A.Mukhtar, X.Chen, P.Yi, M.Tan: Mater. Lett.130 (2014) 256. 10.1016/j.matlet.2014.05.130Suche in Google Scholar

[3] O.Kitakami, H.Sato, Y.Shimada, F.Sato, M.Tanaka: Phys. Rev. B56 (1997) 13849. 10.1103/PhysRevB.56.13849Suche in Google Scholar

[4] E.Owen, D.M.Jones: Proc. Phys. Soc. Sect. B67 (1954) 456. 10.1088/0370-1301/67/6/302Suche in Google Scholar

[5] H.Sato, O.Kitakami, T.Sakurai, Y.Shimada, Y.Otani, K.Fukamichi: J. Appl. Phys.81 (1997) 1858. 10.1063/1.363917Suche in Google Scholar

[6] B.B.Straumal, W.Gust, N.F.Vershinin, T.Watanabe, Y.Igarashi, X.Zhao: Thin Solid Films319 (1998) 124. 10.1016/S0040-6090(97)01106-1Suche in Google Scholar

[7] B.B.Straumal, A.A.Mazilkin, B.Baretzky, G.Schütz, E.Rabkin, R.Z.Valiev: Mater. Trans.53 (2012) 63. 10.2320/matertrans.MD201111Suche in Google Scholar

[8] M.Tan, X.Chen: J. Electrochem. Soc.159 (2012) K15. 10.1149/2.008201jesSuche in Google Scholar

[9] X.H.Huang, L.Li, X.Luo, X.G.Zhu, G.G.Li: J. Phys. Chem.C112 (2008) 1468. 10.1021/jp0749975Suche in Google Scholar

[10] A.R.Miedema, B.E.Nieuwenhuys: Surf. Sci.104 (1981) 491. 10.1016/0039-6028(81)90074-1Suche in Google Scholar

[11] M.Alden, S.Mirbt, H.L.Skriver, N.M.Rosengaard, B.Johansson: Phys. Rev. B46 (1992) 6303. 10.1103/PhysRevB.46.6303Suche in Google Scholar

[12] P.Milan, M.Schlesinger: Fundamentals of Electrochemical Deposition, Wiley, New York (1998).Suche in Google Scholar

[13] A.M.Rashidi, A.Amadeh: Surf. Coat. Technol.204 (2009) 353. 10.1016/j.surfcoat.2009.07.036Suche in Google Scholar

[14] J.W.P.Schmelzer: Mater. Phys. Mech.6 (2003) 21.Suche in Google Scholar

[15] A.Krause, M.Uhlemann, A.Gebert, L.Schultz: Thin Solid Films515 (2006) 1694. 10.1016/j.tsf.2006.06.003Suche in Google Scholar

[16] X.W.Wang, G.T.Fei, P.Tong, X.J.Xu, L.D.Zhang: J. Cryst. Growth300 (2007) 421. 10.1016/j.jcrysgro.2006.12.039Suche in Google Scholar

[17] J.Huang, Y.Wu, H.Ye: Acta Mater.44 (1996) 1201. 10.1016/1359-6454(95)00170-4Suche in Google Scholar

Received: 2015-03-19
Accepted: 2015-05-04
Published Online: 2015-09-10
Published in Print: 2015-09-15

© 2015, Carl Hanser Verlag, München

Heruntergeladen am 24.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111269/html
Button zum nach oben scrollen