Home Technology Local structure of explosively welded titanium–stainless steel bimetal
Article
Licensed
Unlicensed Requires Authentication

Local structure of explosively welded titanium–stainless steel bimetal

  • Karel Saksl EMAIL logo , Dmytro Ostroushko , Eva Mazancová , Zygmunt Szulc , Ondrej Milkovič , Martin Ďurišin , Dušan Balga , Juraj Ďurišin , Uta Rütt and Olof Gutowski
Published/Copyright: October 27, 2021
Become an author with De Gruyter Brill

Abstract

Bimetals targeted for industrial applications are usually designed to combine the properties of two dissimilar metals, e. g. high strength, high hardness and low cost of steels with chemically resistive titanium. In this work the structure of one particular, but for industries very interesting, bimetallic system – Cr/Ni stainless steel clad with titanium has been studied. The material was prepared by explosion welding, a method capable of joining a wide variety of similar or dissimilar materials. Our analysis is based on X-ray micro-diffraction experimentation utilizing hard monochromatic X-rays focused down to micrometer size. In this way the bimetal in bulk form was analyzed and microstructural differences between the joined materials and their interface were determined.


Ing. Karel Saksl, DrSc. Institute of Materials Research Slovak Academy of Sciences Watsonova 47 040 01 Kosice Slovak Republic Tel.: + 421 55 7922496 Fax: + 421 55 7922408

References

[1] K. Raghukandan: J. Mater. Process. Technol. 139 (2003) 573. DOI:10.1016/S0924-0136(03)00539-910.1016/S0924-0136(03)00539-9Search in Google Scholar

[2] H. Paul, J. Morgiel, T. Baudin, E. Brisset, M. Praz_mowski, M. Miszczyk: Arch. Metall. Mater. 59 (2014) 1129. DOI:10.2478/amm-2014-019710.2478/amm-2014-0197Search in Google Scholar

[3] J. Song, A. Kostka, M. Veehmayer, D. Raabe: Mat. Sci. Eng. A 528 (2011) 2641. DOI:10.1016/j.msea.2010.11.09210.1016/j.msea.2010.11.092Search in Google Scholar

[4] E. Mazancová, D. Ostroushko: Mat. Sci. Forum 782 (2014) 166. 10.4028/www.scientific.net/MSF.782.166Search in Google Scholar

[5] B. Wang, W. Chen, J. Li, Z. Zhu: Mater. Des. 47 (2013) 74. DOI:10.1016/j.matdes.2012.11.05210.1016/j.matdes.2012.11.052Search in Google Scholar

[6] P. Manikandan, K. Hokamoto, A.A. Deribas, K. Rghukandan, R. Tomoshige: Mater. Trans. 47(8) (2006) 2049. DOI:10.2320/matertrans.47.204910.2320/matertrans.47.2049Search in Google Scholar

[7] S.A.A. Mousavi, P.F. Sartangi: Mater. Des. 30 (2009) 459. DOI:10.1016/j.matdes.2008.06.01610.1016/j.matdes.2008.06.016Search in Google Scholar

[8] S.A.A. Mousavi, S.T.S. Al-Hassani, A.G. Atkins: Mater. Des. 29 (2008) 1334. DOI:10.1016/j.matdes.2007.06.01010.1016/j.matdes.2007.06.010Search in Google Scholar

[9] S.Yu. Mironov, G.A. Salischev: Fyzika Metallov i Metallovedenie 92(5) (2001) 81.Search in Google Scholar

[10] http://photonscience.desy.de/facilities/petra_iii/beamlines/p07_high_energy_materials_science/index_eng.htmlSearch in Google Scholar

[11] PETRA III Technical Design Report, DESY 2004–035. http://petra3-project.desy.de/general/tdr/index_eng.htmlSearch in Google Scholar

[12] L.B. Skinner, C.J. Benmorea, J.B. Parise: Nucl. Instr. Meth. Phys. Res. 662 (2012) 61. DOI:10.1016/j.nima.2011.09.03110.1016/j.nima.2011.09.031Search in Google Scholar

[13] A.P. Hammersley, S.O. Svensson, M. Hanfland, A.N. Fitch, D. Häusermann: High Press. Res. 14 (1996) 235–248. DOI:10.1080/0895795960820140810.1080/08957959608201408Search in Google Scholar

[14] D. Balga, D. Ostroushko, K. Saksl, E. Mazancová, O. Milkovič: Arch. Metal. Mater. 59 (2014) 1593. DOI:10.2478/amm-2014-027010.2478/amm-2014-0270Search in Google Scholar

[15] X. Yan, X.Q. Chen, A. Grytsiv, V.T. Witusiewicz, P. Rogl, R. Podloucky, V. Pomjakushin, G. Giester: Int. J. Mat. Res. 97 (2006) 450. DOI:10.3139/146.10123810.3139/146.101238Search in Google Scholar

[16] ICDD-JCPDS PDF-2 powder diffraction database, record No. 150336.Search in Google Scholar

[17] ICDD-JCPDS PDF-2 powder diffraction database, record No. 441288.Search in Google Scholar

Received: 2014-12-10
Accepted: 2015-01-27
Published Online: 2021-10-27

© 2015 Carl Hanser Verlag GmbH & Co. KG

Articles in the same Issue

  1. Frontmatter
  2. Original Contributions
  3. Study on the σ-phase precipitation of SAF2906 duplex stainless steel
  4. Recovery, recrystallization and diffusion in cold-rolled Ni
  5. Splitting phenomenon in martensitic transformation of X12CrMoWVNbN10-1-1 steel
  6. Deformation behaviour of micro-milled cp-titanium specimens under tensile loading
  7. Mechanical-thermal synthesis of NbB2 powder from Mg/B2O3/Nb powder mixture
  8. Influence of MgO on the phase equilibria in the CuxO–FeOy–MgO –SiO2 system in equilibrium with copper alloy – Part II: Results and discussion
  9. Non-uniform sintering of yttria-stabilized zirconia powder compact
  10. Effect of pH and H2S concentration on sulfide stress corrosion cracking (SSCC) of API 2205 duplex stainless steel
  11. Study of wear and corrosion behavior of cathodic plasma electrolytic deposition of zirconia– hydroxyapatite on titanium and 316L stainless steel in Ringer’s solution
  12. Local structure of explosively welded titanium–stainless steel bimetal
  13. Surface-induced oxidation kinetics and mechanism of oxidation of 2-D carbon fabric in different oxidative environments
  14. Short Communications
  15. Microstructural evaluation of ball-milled nano Al2O3 particulate-reinforced aluminum matrix composite powders
  16. Effect of carbon nanotubes produced by using different methods on electrical and optical properties of zinc oxide–carbon nanotube composite
  17. The impact of injection velocity on the defects in thick components fabricated by inserted metal injection molding
  18. Book Review / Buchbesprechungen
  19. Nanowerkstoffe für Einsteiger
  20. Personal
  21. Conferences
Downloaded on 6.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111224/pdf
Scroll to top button