Startseite Technik Structural, thermal and optical studies of nanocomposite powder NiSb + Sb produced by mechanical alloying
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Structural, thermal and optical studies of nanocomposite powder NiSb + Sb produced by mechanical alloying

  • Sérgio Michielon de Souza , Gleison Adriano da Silva , Cláudio Natálio Lima , Daniela Menegon Trichês , Cláudio Michel Poffo und João Cardoso de Lima
Veröffentlicht/Copyright: 12. Mai 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A nanostructured composite powder formed from 75 wt.% NiSb and 25 wt.% Sb was obtained by mechanical alloying binary mixtures of elemental Ni and Sb powders in the composition NiSb2 for 39 hours. The structural evolution was followed by X-ray diffraction measurements and Rietveld structural refinement. At the end of milling, the crystallites of Sb and NiSb reached a mean size of 17 and 15 nm, respectively. Differential scanning calorimetry measurement showed two exothermic processes at 263 °C and 309 °C. Variable temperature powder X-ray diffraction measurements at 25, 100, 200 and 300 °C showed that the sample is structurally stable until 100 °C. The beginning of the transition NiSb + Sb → NiSb2 was observed at 200 °C and the nucleation of Sb2O3 was observed at 300 °C in accordance with differential scanning calorimetry measurement. Raman spectroscopy measurements showed neither NiSb nor NiSb2 compounds produce significant Raman signals when compared with Sb and Sb2O3.


* Correspondence address, Dr. Daniela Menegon Trichês, Department of Physics, Federal University of Amazonas, Av. Gen. Rodrigo Otávio Ramos, 3000, Coroado, Campus Universitário, Setor Norte Manaus, 69077-000 Amazonas, Brazil, Tel: +55 92 98127 8651, Fax: +55 92 3305 2817, E-mail:

References

[1] C.Li, J.Hu, Q.Peng, X.Wang: Mater. Chem. Phys.110 (2008) 106. 10.1016/j.matchemphys.2008.01.022Suche in Google Scholar

[2] L.Kumari, W.Li, J.Y.Huang, P.P.Provencio: J. Phys. Chem. C114 (2010) 9573. 10.1021/jp9110053Suche in Google Scholar

[3] J.Xie, X.B.Zhao, H.M.Yu, H.Qi, G.S.Cao, J.P.Tu: J. Alloys Compd.441 (2007) 231. 10.1016/j.jallcom.2006.09.087Suche in Google Scholar

[4] J.Xie, Y.X.Zheng, R.J.Pan, S.Y.Liu, W.T.Song, G.S.Cao, T.J.Zhu, X.B.Zhao: Int. J. Electrochem. Sci.6 (2011) 4811.Suche in Google Scholar

[5] J.Xie, X.B.Zhao, G.S.Cao, M.J.Zhao, S.F.Su: J. Alloys Compd.393 (2005) 283. 10.1016/j.jallcom.2004.09.060Suche in Google Scholar

[6] C.Villevieille, C.M.Ionica-Bousquet, B.Ducourant, J.C.Jumas, L.Monconduit: J. Power Sources172 (2007) 388. 10.1016/j.jpowsour.2007.06.256Suche in Google Scholar

[7] J.R.Williams, D.C.Johnson: Inorg. Chem.41 (2002) 4127. 10.1021/ic011131jSuche in Google Scholar PubMed

[8] C.Ding, C.Jihua, Y.Hongee, C.Zhenhua: Mater. Sci. Eng. A444 (2007) 1. 10.1016/j.msea.2005.05.121Suche in Google Scholar

[9] P.Amornpitoksuk, S.Suwanboon, T.Ratana, T.Ratana: J. Alloys Compd.501 (2010) 100. 10.1016/j.jallcom.2010.04.051Suche in Google Scholar

[10] P.R.Soni: Mechanical alloying: fundamentals and applications, Cambridge International Science Publishing Ltd. (2001).Suche in Google Scholar

[11] H.M.Rietveld: J. Appl. Cryst.2 (1969) 65. 10.1107/S0021889869006558Suche in Google Scholar

[12] A.C.Larson, R.B.von Dreele: GSAS-General Structure Analysis System, Los Alamos National Laboratory Report LAUR86748 (1994).Suche in Google Scholar

[13] L.B.McCusker, R.B.von Dreele, D.E.Cox, D.Louër, P.Scardi: J. Appl. Crystallogr.32 (1999) 36. 10.1107/S0021889898009856Suche in Google Scholar

[14] E.J.Mittemeijer, U.Welzel: Z. Kristallogr.223 (2008) 552. 10.1524/zkri.2008.1213Suche in Google Scholar

[15] J.Franttia, S.Eriksson, S.Hull, S.Ivanov, V.Lantto, J.Lappalainen, M.Kakihana: J. Eur. Ceram. Soc.24 (2004) 1141. 10.1016/S0955-2219(03)00582-XSuche in Google Scholar

[16] P.W.Stephens: J. Appl. Cryst.32 (1999) 281. 10.1107/S0021889898006001Suche in Google Scholar

[17] Q.H.F.Rebelo, E.A.Cotta, S.M.de Souza, D.M.Trichês, K.D.Machado, J.C.de Lima, T.A.Grandi, C.M.Poffo, L.Manzato: J. Alloys Compd.575 (2013) 80. 10.1016/j.jallcom.2013.03.251Suche in Google Scholar

[18] G.V.Vajenine, X.Wang, I.Efthimiopoulos, S.Karmakar, K.Syassen, M.Hanfland: Phys. Rev. B79 (2009) 224107. 10.1103/PhysRevB.79.224107Suche in Google Scholar

[19] K.Santra, P.Chatterjee, S.P.Sen Gupta: Bull. Mater. Sci.25 (2002) 251. 10.1007/BF02711163Suche in Google Scholar

[20] Inorganic Crystal Structure Database (ICSD): Gmelin-Institut für Anorganische Chemie and Fachinformationszentrum FIZ Karlsruhe (1995).Suche in Google Scholar

[21] J.C.Tedenac, in: D.M.Rowe (Ed.), Thermoelectrics and Its Energy Harvesting – Materials, Preparation and Characterization, CRC Press, Taylor & Francis, USA (2012) 5.Suche in Google Scholar

[22] G.K.Rane, U.Welzel, S.R.Meka, E.J.Mittemeijer: Acta Mater.61 (2013) 4524. 10.1016/j.actamat.2013.04.021Suche in Google Scholar

[23] O.Degtyareva, V.V.Struzhkin, R.J.Hemley: Solid State Commun.141 (2007) 164. 10.1016/j.ssc.2006.10.009Suche in Google Scholar

[24] http://rruff.info/chem=Ni,%20Sb/display=default/R060928R.T.Downs: The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals1994. Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan. (2006) O0313.Suche in Google Scholar

[25] D.W.Zeng, C.S.Xie, B.L.Zhu, W.L.Song: Mater. Lett.58 (2004) 312. 10.1016/S0167-577X(03)00476-2Suche in Google Scholar

Received: 2014-09-16
Accepted: 2014-12-17
Published Online: 2015-05-12
Published in Print: 2015-05-13

© 2015, Carl Hanser Verlag, München

Heruntergeladen am 6.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111211/pdf
Button zum nach oben scrollen