Structural, thermal and optical studies of nanocomposite powder NiSb + Sb produced by mechanical alloying
-
Sérgio Michielon de Souza
, Gleison Adriano da Silva , Cláudio Natálio Lima , Daniela Menegon Trichês , Cláudio Michel Poffo und João Cardoso de Lima
Abstract
A nanostructured composite powder formed from 75 wt.% NiSb and 25 wt.% Sb was obtained by mechanical alloying binary mixtures of elemental Ni and Sb powders in the composition NiSb2 for 39 hours. The structural evolution was followed by X-ray diffraction measurements and Rietveld structural refinement. At the end of milling, the crystallites of Sb and NiSb reached a mean size of 17 and 15 nm, respectively. Differential scanning calorimetry measurement showed two exothermic processes at 263 °C and 309 °C. Variable temperature powder X-ray diffraction measurements at 25, 100, 200 and 300 °C showed that the sample is structurally stable until 100 °C. The beginning of the transition NiSb + Sb → NiSb2 was observed at 200 °C and the nucleation of Sb2O3 was observed at 300 °C in accordance with differential scanning calorimetry measurement. Raman spectroscopy measurements showed neither NiSb nor NiSb2 compounds produce significant Raman signals when compared with Sb and Sb2O3.
References
[1] C.Li, J.Hu, Q.Peng, X.Wang: Mater. Chem. Phys.110 (2008) 106. 10.1016/j.matchemphys.2008.01.022Suche in Google Scholar
[2] L.Kumari, W.Li, J.Y.Huang, P.P.Provencio: J. Phys. Chem. C114 (2010) 9573. 10.1021/jp9110053Suche in Google Scholar
[3] J.Xie, X.B.Zhao, H.M.Yu, H.Qi, G.S.Cao, J.P.Tu: J. Alloys Compd.441 (2007) 231. 10.1016/j.jallcom.2006.09.087Suche in Google Scholar
[4] J.Xie, Y.X.Zheng, R.J.Pan, S.Y.Liu, W.T.Song, G.S.Cao, T.J.Zhu, X.B.Zhao: Int. J. Electrochem. Sci.6 (2011) 4811.Suche in Google Scholar
[5] J.Xie, X.B.Zhao, G.S.Cao, M.J.Zhao, S.F.Su: J. Alloys Compd.393 (2005) 283. 10.1016/j.jallcom.2004.09.060Suche in Google Scholar
[6] C.Villevieille, C.M.Ionica-Bousquet, B.Ducourant, J.C.Jumas, L.Monconduit: J. Power Sources172 (2007) 388. 10.1016/j.jpowsour.2007.06.256Suche in Google Scholar
[7] J.R.Williams, D.C.Johnson: Inorg. Chem.41 (2002) 4127. 10.1021/ic011131jSuche in Google Scholar PubMed
[8] C.Ding, C.Jihua, Y.Hongee, C.Zhenhua: Mater. Sci. Eng. A444 (2007) 1. 10.1016/j.msea.2005.05.121Suche in Google Scholar
[9] P.Amornpitoksuk, S.Suwanboon, T.Ratana, T.Ratana: J. Alloys Compd.501 (2010) 100. 10.1016/j.jallcom.2010.04.051Suche in Google Scholar
[10] P.R.Soni: Mechanical alloying: fundamentals and applications, Cambridge International Science Publishing Ltd. (2001).Suche in Google Scholar
[11] H.M.Rietveld: J. Appl. Cryst.2 (1969) 65. 10.1107/S0021889869006558Suche in Google Scholar
[12] A.C.Larson, R.B.von Dreele: GSAS-General Structure Analysis System, Los Alamos National Laboratory Report LAUR86–748 (1994).Suche in Google Scholar
[13] L.B.McCusker, R.B.von Dreele, D.E.Cox, D.Louër, P.Scardi: J. Appl. Crystallogr.32 (1999) 36. 10.1107/S0021889898009856Suche in Google Scholar
[14] E.J.Mittemeijer, U.Welzel: Z. Kristallogr.223 (2008) 552. 10.1524/zkri.2008.1213Suche in Google Scholar
[15] J.Franttia, S.Eriksson, S.Hull, S.Ivanov, V.Lantto, J.Lappalainen, M.Kakihana: J. Eur. Ceram. Soc.24 (2004) 1141. 10.1016/S0955-2219(03)00582-XSuche in Google Scholar
[16] P.W.Stephens: J. Appl. Cryst.32 (1999) 281. 10.1107/S0021889898006001Suche in Google Scholar
[17] Q.H.F.Rebelo, E.A.Cotta, S.M.de Souza, D.M.Trichês, K.D.Machado, J.C.de Lima, T.A.Grandi, C.M.Poffo, L.Manzato: J. Alloys Compd.575 (2013) 80. 10.1016/j.jallcom.2013.03.251Suche in Google Scholar
[18] G.V.Vajenine, X.Wang, I.Efthimiopoulos, S.Karmakar, K.Syassen, M.Hanfland: Phys. Rev. B79 (2009) 224107. 10.1103/PhysRevB.79.224107Suche in Google Scholar
[19] K.Santra, P.Chatterjee, S.P.Sen Gupta: Bull. Mater. Sci.25 (2002) 251. 10.1007/BF02711163Suche in Google Scholar
[20] Inorganic Crystal Structure Database (ICSD): Gmelin-Institut für Anorganische Chemie and Fachinformationszentrum FIZ Karlsruhe (1995).Suche in Google Scholar
[21] J.C.Tedenac, in: D.M.Rowe (Ed.), Thermoelectrics and Its Energy Harvesting – Materials, Preparation and Characterization, CRC Press, Taylor & Francis, USA (2012) 5.Suche in Google Scholar
[22] G.K.Rane, U.Welzel, S.R.Meka, E.J.Mittemeijer: Acta Mater.61 (2013) 4524. 10.1016/j.actamat.2013.04.021Suche in Google Scholar
[23] O.Degtyareva, V.V.Struzhkin, R.J.Hemley: Solid State Commun.141 (2007) 164. 10.1016/j.ssc.2006.10.009Suche in Google Scholar
[24] http://rruff.info/chem=Ni,%20Sb/display=default/R060928R.T.Downs: The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals1994. Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan. (2006) O03–13.Suche in Google Scholar
[25] D.W.Zeng, C.S.Xie, B.L.Zhu, W.L.Song: Mater. Lett.58 (2004) 312. 10.1016/S0167-577X(03)00476-2Suche in Google Scholar
© 2015, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Thermodynamic description of the Ti–O system
- Influence of MgO on the phase equilibria in the CuOx–FeOy–MgO–SiO2 system in equilibrium with copper alloy – Part I: methodology and liquidus in the tridymite primary phase field
- Experimental phase diagram of the V–Si–Ho ternary system
- Experimental study of the phase relationships in the Al-rich corner of the Al–Si–Fe–Cr quaternary system at 700 °C
- Effect of quench–ageing treatment on the microstructure and properties of Zn-15Al-3Cu alloy
- Grain growth and thermal stability in nanocrystalline Fe–B alloys prepared by melt spinning
- Microatmosphere sintering of Fe-3.2Mn-1.5Si-0.5C steel in flowing technical nitrogen
- Structural, thermal and optical studies of nanocomposite powder NiSb + Sb produced by mechanical alloying
- Effect of Mo/B atomic ratio on the properties of Mo2NiB2-based cermets
- Improving the stoichiometry of RF-sputtered amorphous alumina thin films by thermal annealing
- Assessment on the contact factors of a sandwich soft finger model – An experimental investigation
- Reducing debinding time in thick components fabricated by powder injection molding
- Short Communications
- Rapid synthesis of Ag nanoparticles and Ag@SiO2 core–shells
- Electrical conductivity of bismuth doped dysprosia stabilized zirconia as an electrolyte material for SOFC
- People
- Prof. Dr.-Ing. Lorenz Singheiser on the occasion of his 65th birthday
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Thermodynamic description of the Ti–O system
- Influence of MgO on the phase equilibria in the CuOx–FeOy–MgO–SiO2 system in equilibrium with copper alloy – Part I: methodology and liquidus in the tridymite primary phase field
- Experimental phase diagram of the V–Si–Ho ternary system
- Experimental study of the phase relationships in the Al-rich corner of the Al–Si–Fe–Cr quaternary system at 700 °C
- Effect of quench–ageing treatment on the microstructure and properties of Zn-15Al-3Cu alloy
- Grain growth and thermal stability in nanocrystalline Fe–B alloys prepared by melt spinning
- Microatmosphere sintering of Fe-3.2Mn-1.5Si-0.5C steel in flowing technical nitrogen
- Structural, thermal and optical studies of nanocomposite powder NiSb + Sb produced by mechanical alloying
- Effect of Mo/B atomic ratio on the properties of Mo2NiB2-based cermets
- Improving the stoichiometry of RF-sputtered amorphous alumina thin films by thermal annealing
- Assessment on the contact factors of a sandwich soft finger model – An experimental investigation
- Reducing debinding time in thick components fabricated by powder injection molding
- Short Communications
- Rapid synthesis of Ag nanoparticles and Ag@SiO2 core–shells
- Electrical conductivity of bismuth doped dysprosia stabilized zirconia as an electrolyte material for SOFC
- People
- Prof. Dr.-Ing. Lorenz Singheiser on the occasion of his 65th birthday
- DGM News
- DGM News