Microatmosphere sintering of Fe-3.2Mn-1.5Si-0.5C steel in flowing technical nitrogen
-
Andrzej Cias
Abstract
The dependence of properties of sintered Fe–Mn steels, produced with commercial ferromanganese and ferrosilicon, on processing parameters are examined. By controlling the local “microclimate”, using a semiclosed container/getter/activator combination, Fe-3.2Mn-1.4Si-0.5C steel was successfully sintered in flowing technical nitrogen or 95 vol.% N2/5 vol.% H2 furnace atmosphere. The getters were naphthalene and ferromanganese. The necessary reducing reactions involving manganese vapour and nascent carbon with water vapour and manganese and silicon oxides took place in the dry “microatmosphere” within and around the specimens. The resultant average values of ultimate tensile strength, 0.2% offset yield stress and elongation were 871 MPa, 561 MPa, and 2.21%, respectively, not significantly different from literature values for steels produced on the basis of Fe–Si–Mn ferroalloys sintered in dry hydrogen.
References
[1] H.Danninger, C.Gierl: Sci. Sinter.40 (2008) 33. 10.2298/SOS0801033DSuche in Google Scholar
[2] Z.Zhang, K.Frisk, A.Salwén, R.Sandström: Powder Metall.47 (2004) 239. 10.1179/003258904225015572Suche in Google Scholar
[3] H.Danninger, R.Pöttschacher, S.Bradac, A.Šalak, J.Seyrkammer: Powder Metall.48 (2005) 23. 10.1179/003258905X37567Suche in Google Scholar
[4] T.Pieczonka, M.Sułowski, A.Cias: Arch. Metall. Mater.57 (2012) 1001.10.2478/v10172-012-0112-6Suche in Google Scholar
[5] A.Cias, S.C.Mitchell, K.Pilch, H.Cias, M.Sułowski, A.S.Wronski: Powder Metall.46 (2003) 165. 10.1179/003258903225005312Suche in Google Scholar
[6] M.Sułowski, A.Cias, M.Stoytchev, T.Andreev: Mater. Sci. Forum534-536 (2007) 753.10.4028/www.scientific.net/MSF.534-536.753Suche in Google Scholar
[7] M.Sułowski, A.Cias: Arch. Metall. Mater.56 (2011) 293.Suche in Google Scholar
[8] M.J.Dougan, J.Morato: Adv. Powder Metall. Part. Mater., MPIF, Princeton, NJ (2008) part 7, 35.Suche in Google Scholar
[9] B.Lindsley: Adv. Powder Metall. Part. Mater., MPIF, Princeton, NJ (2008) part 7, 17x.Suche in Google Scholar
[10] B.Lindsley, B.James: Proc. PM World Congress & Exhibition, EPMA, vol. 3, Florence (2010) 151.Suche in Google Scholar
[11] A.Cias, S.C.Mitchell, A.Watts, A.S.Wronski: Powder Metall.42 (1999) 227. 10.1179/003258999665567Suche in Google Scholar
[12] S.C.Mitchell, A.Cias: Powder Metall. Prog.4 (2004) 132.Suche in Google Scholar
[13] A.N.Klein, R.Oberacker, F.Thümmler: Powder Metall. Int.17 (1) (1985) 13.Suche in Google Scholar
[14] A.N.Klein, R.Oberacker, F.Thümmler: Powder Metall. Int.17 (2) (1985) 71.Suche in Google Scholar
[15] A.N.Klein, R.Oberacker, F.Thümmler: Met. Powder Rep.39 (1984) 335.Suche in Google Scholar
[16] A.Šalak: “Ferrous powder metallurgy”, Cambridge International Science Publishing, Cambridge (1995).Suche in Google Scholar
[17] P.Beiss, R.Wassenberg: Proc. EuroPM2005 Prague, EPMA, Shrewsbury, 1 (2005) 143.Suche in Google Scholar
[18] Z.Zhang, R.Sandström: J. Alloys Compd.363 (2004) 194. 10.1016/S0925-8388(03)00450-XSuche in Google Scholar
[19] S.Sainz, V.Martinez, M.Dougan, F.Baumgaertner, F.Castro: Proc. Int. Conf. Powder Metall. Part. Mater., San Diego, California (2006), MPIF, pp. 624–637.Suche in Google Scholar
[20] A.Marquardt, C.Recknagel, I.Langer, S.Muller, B.Kieback: Proc. Euro Powder Metall. Conf., Barcelona, (2011) 143.Suche in Google Scholar
[21] R.Oro, M.Campos, J.M.Torralba, C.Capdevila: Powder Metall.55 (2012) 294. 10.1179/1743290112Y.0000000016Suche in Google Scholar
[22] R.Oro, M.Campos, E.Hryha, J.M.Torralba, L.Nyborg: Mater. Charact.86 (2013) 80. 10.1016/j.matchar.2013.07.022Suche in Google Scholar
[23] A.Cias: Powder Metall.56 (2013) 231. 10.1179/1743290112Y.0000000048Suche in Google Scholar
[24] A.Cias, S.C.Mitchell: Powder Metall. Prog.5 (2005) 82.Suche in Google Scholar
[25] A.Cias: Sci. Sinter.45 (2013) 379. 10.2298/SOS1303379CSuche in Google Scholar
[26] O.Kubashevski, C.B.Alcock, P.J.Spencer: Materials Thermochemistry, 6th. Ed., Pergamon, Oxford, UK (1993).Suche in Google Scholar
[27] A.Cias: Development and properties of Fe-Mn-(Mo)-Cr-C sintered structural Steels, ed. AGH Uczelniane Wydawnictwa Naukowo–Dydaktyczne, Kraków (2004).Suche in Google Scholar
[28] A.Cias: Chemical reactions during sintering of Fe-Cr-Mn-Si-Ni-Mo-C-steels with special reference to processing in semiclosed containers, Science of Sintering (2014), in press.10.2298/SOS1501061CSuche in Google Scholar
[29] E.Hryha, E.Dudrova, L.Nyborg: J. Mater. Process. Technol.212 (2012) 977. 10.1016/j.jmatprotec.2011.12.008Suche in Google Scholar
[30] William Rowland Ltd technical information; http://www.william-rowland.com/products/ferro-alloys#product-id-37.Suche in Google Scholar
[31] K.Faryj, A.Cias: Arch. Metall. Mater.53 (2008) 817.Suche in Google Scholar
[32] A.Šalak: Powder Metall. Int.4 (1986) 266.Suche in Google Scholar
[33] A.Šalak, M.Selecká: Manganese in Powder Metallurgy Steels, Cambridge Int. Sci. Publ. Ltd (2012). 10.1007/978-1-907343-75-9Suche in Google Scholar
[34] M.Kabatová, E.Dudrová, A.S.Wronski: Powder Metall.49 (2006) 363. 10.1179/174329006X128313Suche in Google Scholar
[35] E.Dudrová, M. Kabátová: Proc. PM World Cong., Vienna, Austria. Ed. H.Danninger, R.Ratzi, EPMA, Vol. 3. (2004) 193.Suche in Google Scholar
[36] E.Dudrová, M.Kabátová, A.S.Wronski, SC.Mitchell, R.Bidulský: Acta Metallurgica Slovaca, Special Issue13 (2007) 787.Suche in Google Scholar
[37] A.A.Malyshenko, Y.N.Podrezov, S.A.Firstov: Theor. Appl. Fract. Mech.21 (1994) 101. 10.1016/0167-8442(94)00029-8Suche in Google Scholar
[38] E.Hryha, L.Nyborg, E.Dudrova, S.Bengtsson: Powder Metall. Prog.8 (2008) 109.Suche in Google Scholar
[39] E.Hryha, E.Dudrova, L.Nyborg: Metall. Mater. Trans. A41 (2010) 2880. 10.1007/s11661-010-0357-5Suche in Google Scholar
[40] A.Cias, S.C.Mitchell, A.S.Wronski: Proc. PM World Congress, Granada, Spain, EPMA, Vol. 3 (1998) 179.Suche in Google Scholar
[41] A.Cias, A.Czarski: Arch. Metall. Mater.58 (2013) 1045.10.2478/amm-2013-0124Suche in Google Scholar
[42] A.S.Wronski, A.Cias: Powder Metall. Prog.3 (2003) 119.Suche in Google Scholar
[43] E.Hryha, C.Girl, L.Nyborg, D.Danninger, E.Dudrova: Appl. Surf. Sci.256 (2010) 3946. 10.1016/j.apsusc.2010.01.055Suche in Google Scholar
[44] A.Šalak: Sci. Sinter.21 (1989) 145.10.1016/S0022-3182(89)80104-9Suche in Google Scholar
[45] Ch.Schade, T.Murphy, A.Lawley, R.Doherty: Proc. Int. Conf. on Powder Metallurgy & Particulate Materials, MPIF, Chicago, IL (2013) part 07, 54.Suche in Google Scholar
© 2015, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Thermodynamic description of the Ti–O system
- Influence of MgO on the phase equilibria in the CuOx–FeOy–MgO–SiO2 system in equilibrium with copper alloy – Part I: methodology and liquidus in the tridymite primary phase field
- Experimental phase diagram of the V–Si–Ho ternary system
- Experimental study of the phase relationships in the Al-rich corner of the Al–Si–Fe–Cr quaternary system at 700 °C
- Effect of quench–ageing treatment on the microstructure and properties of Zn-15Al-3Cu alloy
- Grain growth and thermal stability in nanocrystalline Fe–B alloys prepared by melt spinning
- Microatmosphere sintering of Fe-3.2Mn-1.5Si-0.5C steel in flowing technical nitrogen
- Structural, thermal and optical studies of nanocomposite powder NiSb + Sb produced by mechanical alloying
- Effect of Mo/B atomic ratio on the properties of Mo2NiB2-based cermets
- Improving the stoichiometry of RF-sputtered amorphous alumina thin films by thermal annealing
- Assessment on the contact factors of a sandwich soft finger model – An experimental investigation
- Reducing debinding time in thick components fabricated by powder injection molding
- Short Communications
- Rapid synthesis of Ag nanoparticles and Ag@SiO2 core–shells
- Electrical conductivity of bismuth doped dysprosia stabilized zirconia as an electrolyte material for SOFC
- People
- Prof. Dr.-Ing. Lorenz Singheiser on the occasion of his 65th birthday
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Thermodynamic description of the Ti–O system
- Influence of MgO on the phase equilibria in the CuOx–FeOy–MgO–SiO2 system in equilibrium with copper alloy – Part I: methodology and liquidus in the tridymite primary phase field
- Experimental phase diagram of the V–Si–Ho ternary system
- Experimental study of the phase relationships in the Al-rich corner of the Al–Si–Fe–Cr quaternary system at 700 °C
- Effect of quench–ageing treatment on the microstructure and properties of Zn-15Al-3Cu alloy
- Grain growth and thermal stability in nanocrystalline Fe–B alloys prepared by melt spinning
- Microatmosphere sintering of Fe-3.2Mn-1.5Si-0.5C steel in flowing technical nitrogen
- Structural, thermal and optical studies of nanocomposite powder NiSb + Sb produced by mechanical alloying
- Effect of Mo/B atomic ratio on the properties of Mo2NiB2-based cermets
- Improving the stoichiometry of RF-sputtered amorphous alumina thin films by thermal annealing
- Assessment on the contact factors of a sandwich soft finger model – An experimental investigation
- Reducing debinding time in thick components fabricated by powder injection molding
- Short Communications
- Rapid synthesis of Ag nanoparticles and Ag@SiO2 core–shells
- Electrical conductivity of bismuth doped dysprosia stabilized zirconia as an electrolyte material for SOFC
- People
- Prof. Dr.-Ing. Lorenz Singheiser on the occasion of his 65th birthday
- DGM News
- DGM News