Influences of high temperature on the microstructural, electrical and mechanical properties of Ni-23 wt.% Al alloy
-
Ercan Karaköse
and Mustafa Keskin
Abstract
The microstructural, electrical and mechanical characteristics of conventionally and rapidly solidified Ni-23 wt.% Al alloys after heat treatments were investigated. The microstructures of Ni-23Al alloys were examined by means of scanning electron microscopy and the phase composition was identified using X-ray diffraction analysis. The phase transitions during the solidification process were investigated using differential thermal analysis under an Ar atmosphere. X-ray diffraction analysis indicated that the Ni-23Al samples showed an intermetallic γ′-Ni3Al phase, and we observed the intermetallic γ′-Ni3Al phase together with the β-NiAl phase after heat treatment at 700–900°C for 24 h. We performed electrical resistivity measurements by using the four-point probe technique in the temperature range 100–900°C. The resistivity of Ni-23 wt.% Al samples increases linearly with temperature. Vickers microindentation tests were carried out on the heat-treated samples with loads ranging from 392.26 mN to 1174.86 mN at room temperature. We found that the microhardness and effective elastic modulus values increased with increasing temperature and these values showed peak load dependence. The tensile and compressive stress values of the Ni–Al alloys also decreased with increasing temperature.
References
[1] A.J.Ardell, S.V.Prikhodko: Acta Mater.51 (2003) 5013. 10.1016/S1359-6454(03)00327-6Search in Google Scholar
[2] K.S.Chantal, D.N.Ronald, N.S.David: Acta Mater.55 (2007) 119. 10.1016/j.actamat.2006.08.009Search in Google Scholar
[3] K.Morsi: Mater. Sci. Eng. A299 (2001) 174. 10.1016/S0921-5093(00)01375-7Search in Google Scholar
[4] F.Scheppe, P.R.Sahm, W.Hermann, U.Paul, J.Preuhs: Mater. Sci. Eng. A329–331 (2002) 596.Search in Google Scholar
[5] N.S.Stoloff, C.T.Liu, S.C.Deevi: Intermetallics8 (2000) 1313. 10.1016/S0966-9795(00)00077-7Search in Google Scholar
[6] V.K.Sikka, S.C.Deevi, S.Viswanathan, R.W.Swindeman, M.L.Santella: Intermetallics8 (2000) 1329. 10.1016/S0966-9795(00)00078-9Search in Google Scholar
[7] H.Borodianska, M.Demura, K.Kishida, T.Hirano: Intermetallics10 (2002) 255. 10.1016/S0966-9795(01)00133-9Search in Google Scholar
[8] H.Li, J.Guo, K.Huavai, H.Ye: J. NonCryst. Solids290 (2006) 258.Search in Google Scholar
[9] M.H.Enayati, Z.Sadeghian, M.Salehi, A.Saidi: Mater. Sci. Eng. A375–377 (2004) 809.Search in Google Scholar
[10] Z.Liu, X.K.Meng, T.Recktenwald, F.Mücklich: Mater. Sci. Eng. A342 (2003) 101. 10.1016/S0921-5093(02)00247-2Search in Google Scholar
[11] J.D.Hunt, S.Z.Lu, in: D.T.J.Hurle (Ed.), Handbook of Crystal Growth, vol. 2b, Elsevier (1994) 1111.Search in Google Scholar
[12] T.R.Anantharaman, C.Suryanarayana. Rapidly solidified metals, Trans Tech Publications, Aedermannsdorf, Switzerland (1987) 25.Search in Google Scholar
[13] Y.Birol: J. Alloys Compd.439 (2007) 81. 10.1016/j.jallcom.2006.08.068Search in Google Scholar
[14] E.J.Lavernia, J.D.Ayers, T.Srivatsan: Int. Mater. Rev.37 (1992) 1. 10.1179/imr.1992.37.1.1Search in Google Scholar
[15] B.P.Bewlay, A.Sutliff, M.R.Jackson: Annual Reports, GE Corporate Research and Development, Schenectady, NY (1995).Search in Google Scholar
[16] S.Hanada, S.Watanabe, W.Y.Kim, N.Masahashi, M.S.Kim: Mater. Sci. Eng. A239–240 (1997) 309. 10.1016/S0921-5093(97)00598-4Search in Google Scholar
[17] C.E.Campbell, W.T.Boettinger, U.R.Kattner: Acta Mater.50 (2002) 775. 10.1016/S1359-6454(01)00383-4Search in Google Scholar
[18] J.Cermak, V.Rothova: Acta Mater.51 (2003) 4411. 10.1016/S1359-6454(03)00276-3Search in Google Scholar
[19] V.Rothova, J.Cermak: Intermetallics13 (2005) 113. 10.1016/j.intermet.2004.06.006Search in Google Scholar
[20] G.Cao, L.Geng, Z.Zheng, M.Naka: Intermetallics15 (2007) 1672. 10.1016/j.intermet.2006.03.004Search in Google Scholar
[21] F.M.Smits: Measurement of sheet resistivities with the four probe, The Bell Sys. Tech. J. (1958) 711.10.1002/j.1538-7305.1958.tb03883.xSearch in Google Scholar
[22] M.Arı, B.Saatçi, M.Gündüz, F.Meydaneri, M.Bozoklu: Mater. Charact.59 (2008) 624. 10.1016/j.matchar.2007.05.014Search in Google Scholar
[23] U.Kolemen, O.Uzun, M.A.Aksan, N.Guclu, E.Yakinci: J. Alloys Compd.415 (2006) 294. 10.1016/j.jallcom.2005.09.023Search in Google Scholar
[24] K.Sangwal, B.Surowska, P.Blaziak: Mater. Chem. Phys.80 (2003) 428. 10.1016/S0254-0584(02)00546-1Search in Google Scholar
[25] Q.Zeng, I.Baker: Intermetallics15 (2007) 419. 10.1016/j.intermet.2006.08.010Search in Google Scholar
[26] A.R.Yavari, B.Bochu: Philos. Mag. A59 (1989) 697. 10.1080/01418618908229793Search in Google Scholar
[27] J.Ball, G.Gottstein: Intermetallics1 (1993) 191. 10.1016/0966-9795(93)90012-KSearch in Google Scholar
[28] J. GarciaBarriocanal, P.Perez, G.Garces, P.Adeva: Intermetallics14 (2006) 456. 10.1016/j.intermet.2005.08.008Search in Google Scholar
[29] Z.Liu, X.K.Meng, T.Recktenwald, F.Mücklich: Mater. Sci. Eng. A342 (2003) 101. 10.1016/S0921-5093(02)00247-2Search in Google Scholar
[30] H.Y.Kim, D.S.Chung, S.H.Hong: Mater. Sci. Eng. A396 (2005) 376. 10.1016/j.msea.2005.01.035Search in Google Scholar
[31] S.Miura, Y.Mishima: Mater. Res. Soc. Symp. Proc.364 (1995) 561. 10.1557/PROC-364-561Search in Google Scholar
[32] V.Rudnev, D.Loveless, R.Cook, M.Black: Handbook of induction heating, Markel Dekker Inc., New York (2003).Search in Google Scholar
[33] M.J.Laubitz, T.Matsumura, P.J.Kelly: Can. J. Phys.54 (1976) 92. 10.1139/p76-011Search in Google Scholar
[34] G.K.White, S.B.Woods: Phil. Trans. Roy. Soc. A251 (1959) 273. 10.1098/rsta.1959.0004Search in Google Scholar
[35] K.Ikeda, K.Tanosaki: Trans. Jpn. Inst. Met.25 (1984) 447. 10.2320/matertrans1960.25.447Search in Google Scholar
[36] E.Çadırlı: J. NonCryst. Solids357 (2011) 809. 10.1016/j.jnoncrysol.2010.11.104Search in Google Scholar
[37] H.X.Dong, Y.H.He, Y.Jiang, L.Wu, J.Zou, N.P.Xu, B.Y.Huang, C.T.Liu: Mater. Sci. Eng. A528 (2011) 4849. 10.1016/j.msea.2011.02.014Search in Google Scholar
[38] L.Sheng, W.Zhang, J.Guo, F.Yang, Y.Liang, H.Ye: Intermetallics18 (2010) 740. 10.1016/j.intermet.2009.10.015Search in Google Scholar
[39] L.Y.Sheng, J.T.Guo, Y.X.Tian, L.Z.Zhou, H.Q.Ye: J. Alloys Compd.475 (2009) 730. 10.1016/j.jallcom.2008.07.109Search in Google Scholar
[40] N.Parveen, G.V.S.Murthy: Bull. Mater. Sci.34 (2011) 323. 10.1007/s12034-011-0070-zSearch in Google Scholar
[41] A.Kumar, T.Jayakumar, B.Raj: Philos. Mag. Lett.86 (2006) 579. 10.1080/09500830600936401Search in Google Scholar
© 2015, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- A novel roll-bonding methodology for the cross-scale analysis of phase properties and interactions in multiphase structural materials
- Excellent cold rollability in a single pass of an Mg-4Er (wt.%) alloy
- An experimental study of the precipitation kinetics of pre-rolled Ni-Span-C 902 superalloy
- Influences of high temperature on the microstructural, electrical and mechanical properties of Ni-23 wt.% Al alloy
- Investigation of the wear resistance and microstructure of Al/SiC metal matrix composites as a function of reinforcement volume fraction and reinforcement to matrix particle size ratio applying artificial neural network
- Influence of zinc (II) ion concentration on Ni–Zn–P coatings deposited onto aluminum and their corrosion behavior
- Joining steel to aluminum alloy by resistance spot welding with a rivet
- Electrophysical and structure-sensitive properties of liquid Ga–In alloys
- Short Communications
- Synthesis and characterization of the novel nanocomposite Co(OH)2/graphene as supercapacitor materials
- Preparation of MnAlC flakes by surfactant-assisted ball-milling and the effects of annealing
- An improved two-stage sintering method for tungsten heavy alloys: conventional solid-phase sintering followed by microwave heating
- Effect of excess Pb on ferroelectric characteristics of conductive Al-doped ZnO and Sn-doped In2O3 top electrodes in PbLaZrTiOx capacitors
- Effects of La–Zn substituent and calcination temperature on the microstructure and magnetic properties of Sr-ferrites
- Predicting the corrosion tendency of α-brass in acidic and alkaline tap water
- People
- 10.3139/146.610026
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- A novel roll-bonding methodology for the cross-scale analysis of phase properties and interactions in multiphase structural materials
- Excellent cold rollability in a single pass of an Mg-4Er (wt.%) alloy
- An experimental study of the precipitation kinetics of pre-rolled Ni-Span-C 902 superalloy
- Influences of high temperature on the microstructural, electrical and mechanical properties of Ni-23 wt.% Al alloy
- Investigation of the wear resistance and microstructure of Al/SiC metal matrix composites as a function of reinforcement volume fraction and reinforcement to matrix particle size ratio applying artificial neural network
- Influence of zinc (II) ion concentration on Ni–Zn–P coatings deposited onto aluminum and their corrosion behavior
- Joining steel to aluminum alloy by resistance spot welding with a rivet
- Electrophysical and structure-sensitive properties of liquid Ga–In alloys
- Short Communications
- Synthesis and characterization of the novel nanocomposite Co(OH)2/graphene as supercapacitor materials
- Preparation of MnAlC flakes by surfactant-assisted ball-milling and the effects of annealing
- An improved two-stage sintering method for tungsten heavy alloys: conventional solid-phase sintering followed by microwave heating
- Effect of excess Pb on ferroelectric characteristics of conductive Al-doped ZnO and Sn-doped In2O3 top electrodes in PbLaZrTiOx capacitors
- Effects of La–Zn substituent and calcination temperature on the microstructure and magnetic properties of Sr-ferrites
- Predicting the corrosion tendency of α-brass in acidic and alkaline tap water
- People
- 10.3139/146.610026
- DGM News
- DGM News