Microstructural control of Ti-46Al-7Nb-0.7Cr-0.2Ni-0.1Si alloy by heat treatment
-
Makoto Hasegawa
, Takuya Nomura , Hideki Haga , Ivo Dlouhy and Hiroshi Fukutomi
Abstract
The effects of holding temperature, time and cooling rate on the microstructure of Ti-46Al-7Nb-0.7Cr-0.2Ni-0.1Si (at.%) alloys are studied. Three kinds of segregations are found in the as-cast material. In back scattered electron images these segregations are observed as dark regions formed by the solidification process, bright regions with irregular shaped blocks and imaged regions of lighter contrast formed by the cooling process from β phase to α phase and from α phase to (β + γ) two phase or (α + β + γ) three phase, respectively. Addition of small amounts of Cr, Ni and Si to the Ti-45Al-7Nb alloy shifts the (β + γ) two phase state and (α + γ + β) three phase state to a lower Nb concentration range. While cooling from the α single phase state to the (β + γ) two phase or (α + β + γ) three phase states, sequential type phase transformation occurs. The amounts of Cr, Ni and Si are too small to induce the pearlitic mode of transformation. Therefore, the sequential mode of the ternary alloy containing Nb occurs. The microstructures change depending on the cooling rate from α single phase region. Massive transformation occurs in the range of 300 K s−1 to 50 K s−1. However, the α phase is partially retained at the cooling rate of 300 K s−1. A fully lamellar structure appears at cooling rates lower than 10 K s−1.
References
[1] Y.W.Kim: JOM46 (1994) 30. 10.1007/BF03220670Search in Google Scholar
[2] K.T. VenkateswaraRao, Y.W.Kim, C.L.Muhlstein, R.O.Ritchie: Mater. Sci. Eng.A192/193 (1995) 474. 10.1016/0921-5093(94)03264-5Search in Google Scholar
[3] I.Dlouhý, Z.Chlup, H.Hadraba, K.Krahula: Metallofiz. Noveishie Tekhnol.31 (2009) 1001.Search in Google Scholar
[4] I.Dlouhý, Z.Chlup, H.Hadraba, V.Kozák, in: T.Boukharouba, M.Elboujdaini, G.Pluvinage (Eds.), Damage and Fracture Mechanics: Fracture Analysis of Engineering Materials and Structures, Springer (2009) 265. 10.1007/978-90-481-2669-9_28Search in Google Scholar
[5] K.S.Chan, Y.-W.Kim: Acta Metall. Mater.43 (1995) 439. 10.1016/0956-7151(94)00278-PSearch in Google Scholar
[6] T.Nakano, T.Kawanaka, H.Y.Yasuda, Y.Umakoshi: Mater. Sci. Eng. A194 (1995) 43. 10.1016/0921-5093(94)09658-9Search in Google Scholar
[7] R.Gnanamoorthy, Y.Mutoh, Y.Mizuhara: Mater. Sci. Eng. A203 (1995) 348. 10.1016/0921-5093(95)09831-3Search in Google Scholar
[8] K.T. VenkateswaraRao, G.R.Odette, R.O.Ritchie: Acta Metall. Mater.42 (1994) 893. 10.1016/0956-7151(94)90285-2Search in Google Scholar
[9] J.Beddoes, W.Wallace, L.Zhao: Int. Mater. Rev.40 (1995) 197. 10.1179/095066095790151151Search in Google Scholar
[10] K.Maruyama, R.Yamamoto, H.Nakakuki, N.Fujitsuna: Mater. Sci. Eng.A239–240 (1997) 419.Search in Google Scholar
[11] M.Enoki, S.Fujikawa, T.Kishi: J. Japan Inst. Metals58 (1994) 418.10.2320/jinstmet1952.58.4_418Search in Google Scholar
[12] M.Enoki, T.Kishi: Mater. Sci. Eng.A192–193 (1995) 420.Search in Google Scholar
[13] J.P.Campbell, WY.-T. VenkateswaraRao, R.O.Ritchie: Metall. Mater. Trans. A30 (1999) 563. 10.1007/s11661-999-0048-2Search in Google Scholar
[14] K.Maruyama, T.Nonaka, H.Y.Kim: Intermetallics13 (2005) 1116. 10.1016/j.intermet.2005.02.013Search in Google Scholar
[15] P.D.Crofts, P.Bowen, I.P.Johes: Scripta Mater.35 (1996) 1391. 10.1016/S1359-6462(96)00323-5Search in Google Scholar
[16] A.Chatterjee, H.Mecking, E.Arzt, H.Clemens: Mater. Sci. Eng.A329–331 (2002) 840.Search in Google Scholar
[17] S.Bystrzanowski, A.Bartels, H.Clemens, R.Gerling, F.P.Schimansky, G.Dehm, H.Kestler: Intermetallics13 (2005) 515. 10.1016/j.intermet.2004.09.001Search in Google Scholar
[18] H.Y.Kim, G.Wegmann, K.Maruyama: Mater. Sci. Eng.A329–331 (2002) 795.Search in Google Scholar
[19] K.Kishida, D.R.Johnson, Y.Masuda, H.Umeda, H.Inui, M.Yamaguchi: Intermetallics6 (1998) 679. 10.1016/S0966-9795(98)00055-7Search in Google Scholar
[20] M.Werwer, R.Kabir, A.Cornec, K.-H.Schwalbe: Eng. Fracture Mech.74 (2007) 2615. 10.1016/j.engfracmech.2006.09.022Search in Google Scholar
[21] H.Fukutomi, K.S.Park, Y.Yamaguchi, K.Okayasu: J. Japan Inst. Light Metals55 (2005) 343. 10.2464/jilm.55.343Search in Google Scholar
[22] A.Nomoto, H.Fukutomi: J. Japan Inst. Metals61 (1997) 378.10.2320/jinstmet1952.61.5_378Search in Google Scholar
[23] K.S.Park, K.Matsumura, H.Fukutomi: J. Japan Inst. Metals66 (2002) 425.10.2320/jinstmet1952.66.4_425Search in Google Scholar
[24] M.Hasegawa, H.Fukutomi: Mater. Sci. Eng. A508 (2009) 106. 10.1016/j.msea.2008.12.027Search in Google Scholar
[25] M.Hasegawa, Y.Hirosaki, H.Fukutomi: J. Japan Inst. Metals74 (2010) 475. 10.2320/jinstmet.74.475Search in Google Scholar
[26] R.M.Imayen, V.M.Imayev, M.Oehring, F.Appel: Metall. Mater. Trans A36 (2005) 859. 10.1007/s11661-005-0199-8Search in Google Scholar
[27] A.Stark, A.Bartels, R.Gerling, F.-P.Schimansky, H.Clemens: Adv. Eng. Mater.8 (2006) 1101. 10.1002/adem.200600127Search in Google Scholar
[28] W.Schillinger, A.Bartels, R.Gerling, F.-P.Schimansky, H.Clemens: Intermetallics14 (2006) 336. 10.1016/j.intermet.2005.07.002Search in Google Scholar
[29] S.Taniguchi, T.Shibata: Intermetallics4 (1996) S85. 10.1016/0966-9795(95)00023-2Search in Google Scholar
[30] M.Yoshihara, Y.-W.Kim: Intermetallics13 (2005) 952. 10.1016/j.intermet.2004.12.007Search in Google Scholar
[31] D.Vojtch, T.Popela, J.Kubásek, J.Maixner, P.Novák: Intermetallics19 (2011) 493. 10.1016/j.intermet.2010.11.025Search in Google Scholar
[32] M.Mitoraj, E.M.Godlewska: Intermetallics21 (2013) 112. 10.1016/j.intermet.2012.10.014Search in Google Scholar
[33] M.Hasegawa, T.Nomura, H.Fukutomi: J. Japan Inst. Metals74 (2010) 481. 10.2320/jinstmet.74.475Search in Google Scholar
[34] J.P.Lin, X.J.Xu, Y.L.Wang, S.F.He, Y.Zhang, X.P.Song, G.L.Chen: Intermetallics15 (2007) 668. 10.1016/j.intermet.2006.10.029Search in Google Scholar
[35] J.Lapin, T.Pelachová, M.Domanková: Intermetallics19 (2011) 814. 10.1016/j.intermet.2010.09.016Search in Google Scholar
[36] M.Takeyama, S.Kobayashi: Intermetallics13 (2005) 993. 10.1016/j.intermet.2004.12.014Search in Google Scholar
[37] T.Tetsui, K.Shinoda, S.Kobayashi, M.Takeyama: Intermetallics11 (2003) 299. 10.1016/S0966-9795(02)00245-5Search in Google Scholar
[38] T.Tetsui, K.Shinoda, S.Kobayashi, M.Takeyama: Scripta Mater.47 (2002) 399. 10.1016/S1359-6462(02)00158-6Search in Google Scholar
[39] R.Kainuma, Y.Fujita, H.Mitsui, I.Ohnuma, K.Ishida: Intermetallics8 (2000) 855. 10.1016/S0966-9795(00)00015-7Search in Google Scholar
[40] M.Takeyama, Y.Ohmura, M.Kikuchi, T.Matsuo: Intermetallics6 (1998) 643. 10.1016/S0966-9795(98)00041-7Search in Google Scholar
[41] A.Hellwig, M.Palm, G.Inden: Intermetallics6 (1998) 79. 10.1016/S0966-9795(97)00043-5Search in Google Scholar
[42] G.Petzow, G.Effenberg: Ternary Alloys: A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams: Al-Ni-Tb to Al-Zn-Zr: 8, Wiley VCH (1993).Search in Google Scholar
[43] V.T.Witusiewicz, A.A.Bondar, U.Hecht, T.Ya.Velikanova: J. Alloys Comp.472 (2009) 133. 10.1016/j.jallcom.2008.05.008Search in Google Scholar
[44] V.T.Witusiewicz, A.A.Bondar, U.Hecht, V.M.Voblikov, O.S.Fomichov, V.M.Petyukh, S.Rex: Intermetallics19 (2011) 234. 10.1016/j.intermet.2010.10.002Search in Google Scholar
[45] H.Clemens, H.F.Chladil, W.Wallgram, G.A.Zickler, R.Gerling, K.-D.Liss, S.Kremmer, V.Guther, W.Smarsly: Intermetallics16 (2008) 827. 10.1016/j.intermet.2008.03.008Search in Google Scholar
[46] G.L.Chen, X.J.Xu, Z.K.Teng, Y.L.Wang, J.P.Lin: Intermetallics15 (2007) 625. 10.1016/j.intermet.2006.07.002Search in Google Scholar
[47] Z.W.Huang: Scripta Mater.52 (2005) 1021. 10.1016/j.scriptamat.2005.01.010Search in Google Scholar
[48] P.Wang, G.B.Viswanathan, V.K.Vasudevan: Metall. Trans. A23 (1992) 690. 10.1007/BF02646129Search in Google Scholar
[49] M.Kikuchi, H.Nakamura, Y.Yamabe: Japanese patent JP6116691, (1994).Search in Google Scholar
[50] M.Takeyama, T.Kumagai, T.Aritomi, M.Nakamura: Japanese patent JP6279964, (1994).Search in Google Scholar
[51] H.Saage, A.J.Huang, D.Hu, M.H.Loretto, X.Wu: Intermetallics17 (2009) 32. 10.1016/j.intermet.2008.09.006Search in Google Scholar
[52] H.Clemens, A.Bartels, S.Bystrzanowski, H.Chladil, H.Leitner, G.Dehm, R.Gerling, F.P.Schimansky: Intermetallics14 (2006) 1380. 10.1016/j.intermet.2005.11.015Search in Google Scholar
[53] A.Sankaran, E.Bouzy, J.-J.Fundenberger, A.Hazotte: Intermetallics17 (2009) 1007. 10.1016/j.intermet.2009.05.001Search in Google Scholar
[54] S.Kobayashi: Ph.D Thesis, Tokyo Institute of Technology, Tokyo, (2001).Search in Google Scholar
[55] R.M.Imayev, V.M.Imayev, M.Oehring, F.Appel: Intermetallics15 (2007) 451. 10.1016/j.intermet.2006.05.003Search in Google Scholar
[56] J.N.Wang, K.Xie: Intermetallics8 (2000) 545. 10.1016/S0966-9795(99)00153-3Search in Google Scholar
[57] D.Hu, A.J.Huang, D.Novovic, X.Wu: Intermetallics14 (2006) 818. 10.1016/j.intermet.2005.04.016Search in Google Scholar
[58] D.Hu, A.J.Huang, X.Wu: Intermetallics15 (2007) 327. 10.1016/j.intermet.2006.07.007Search in Google Scholar
© 2014, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Thermodynamic description of the Ta–W–Zr system
- Interrelationships of defects, nitride modification and excess nitrogen in nitrided Fe-4.75 at.% Al alloy
- Effects of rotating magnetic and ultrasonic fields on the microstructure and mechanical properties of Al-8 wt.%Si alloy
- Microstructural control of Ti-46Al-7Nb-0.7Cr-0.2Ni-0.1Si alloy by heat treatment
- Structure and mechanical properties of Zn-(5–25) Al alloys
- Hot ductility behavior of near-alpha titanium alloy IMI834
- The effect of nano-SiO2 on magnetic and dielectric properties of Li–Zn ferrite
- Production of aluminum nano-composite reinforced by tungsten carbide particles via mechanical milling and subsequent hot pressing
- Short Communications
- Microstructure and texture evolution of Mg–Li alloy during rolling
- Microstructure and mechanical properties of Ti2AlC-reinforced TiAl composites
- Thermal fatigue behavior of cast superalloy Inconel 713LC
- Study of structural, morphological and optical properties of S and Cu co-doped SnO2 nanostructured thin films prepared by spray pyrolysis
- Synthesis and characterization of zirconium nitride coatings by cathodic arc sputtering technique
- Plasmon enhanced scattering and fluorescence in amorphous matrix
- Novel preparation of a porous composite insulating scaffold from forsterite and sodium carbonate media
- People
- Werner Mader, 65 years
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Thermodynamic description of the Ta–W–Zr system
- Interrelationships of defects, nitride modification and excess nitrogen in nitrided Fe-4.75 at.% Al alloy
- Effects of rotating magnetic and ultrasonic fields on the microstructure and mechanical properties of Al-8 wt.%Si alloy
- Microstructural control of Ti-46Al-7Nb-0.7Cr-0.2Ni-0.1Si alloy by heat treatment
- Structure and mechanical properties of Zn-(5–25) Al alloys
- Hot ductility behavior of near-alpha titanium alloy IMI834
- The effect of nano-SiO2 on magnetic and dielectric properties of Li–Zn ferrite
- Production of aluminum nano-composite reinforced by tungsten carbide particles via mechanical milling and subsequent hot pressing
- Short Communications
- Microstructure and texture evolution of Mg–Li alloy during rolling
- Microstructure and mechanical properties of Ti2AlC-reinforced TiAl composites
- Thermal fatigue behavior of cast superalloy Inconel 713LC
- Study of structural, morphological and optical properties of S and Cu co-doped SnO2 nanostructured thin films prepared by spray pyrolysis
- Synthesis and characterization of zirconium nitride coatings by cathodic arc sputtering technique
- Plasmon enhanced scattering and fluorescence in amorphous matrix
- Novel preparation of a porous composite insulating scaffold from forsterite and sodium carbonate media
- People
- Werner Mader, 65 years
- DGM News
- DGM News