Effect of Cr and Mo doping on the electrochemical properties of freeze-dried LiCoO2
-
Atıl Büyükburç
Abstract
In this study, LiCoO2 is doped with 2 mol.% Cr and Mo in order to determine the effect of these elements on the electrochemical performance. Precursors are synthesized by means of freeze drying. Calcination is applied at 750 °C for 24 h. Doping content and calcination temperature as well as duration are very important for producing impurity-free layered LiCoO2. If the doping content is larger than 2 mol.% or when the calcination temperature is decreased to 550 °C, impurity phases are seen. As a result, the sample doped with 2 mol.% Cr has better high charge and discharge rate capability, and cycleability, but discharge capacity is slightly lowered when compared to the undoped sample. Electrochemical impedance spectroscopy results show that surface film resistances of Cr-doped samples are lower than that of the undoped sample.
References
[1] Y.Zheng, X.Huang, J.Dai, Z.Zhu, J.Xie: Ceram. Int.37 (2011) 2913. 10.1016/j.ceramint.2011.03.021Search in Google Scholar
[2] A.Vayrynen, J.Salminen: J. Chem. Thermodyn.46 (2012) 80. 10.1016/j.jct.2011.09.005Search in Google Scholar
[3] R.J.Gummow, M.Thackeray: Mater. Res. Bull.27 (1992) 327. 10.1016/0025-5408(92)90062-5Search in Google Scholar
[4] J.N.Reimers, J.R.Dahn: J. Electrochem. Soc.139 (1992) 2091. 10.1149/1.2221184Search in Google Scholar
[5] S.G.Kang, S.Kang, K.Ryu, S.Chang: Solid State Ionics120 (1999) 155. 10.1016/S0167-2738(98)00559-1Search in Google Scholar
[6] W.T.Jeong, K.Lee: J. Power Sources104 (2002) 195. 10.1016/S0378-7753(01)00916-8Search in Google Scholar
[7] A.Burukhin, O.Brylev, P.Hany, B.Churagulov: Solid State Ionics151 (2002) 259. 10.1016/S0167-2738(02)00721-XSearch in Google Scholar
[8] Y.M.Chiang, Y.Jang, H.Wang, B.Huang, D.Sadoway, P.Ye: J. Electrochem. Soc.145 (1998) 887. 10.1149/1.1838362Search in Google Scholar
[9] O.A.Shlyakhtin, N.N.Oleynikov, Y.D.Tretyakov, in: B.Lee, S.Komarneni (Eds), Chemical Processing of Ceramics, Taylor and Francis Group, New York (2005) 77.Search in Google Scholar
[10] O.A.Shlyakhtin, S.Choi, S.Yoon, Y.Oh: Electrochim. Acta50 (2004) 511. 10.1016/j.electacta.2004.05.051Search in Google Scholar
[11] O.A.Brylev, O.Shlyakhtin, T.Kulova, A.Skundin, Y.Tretyakov: Solid State Ionics456 (2003) 291. 10.1016/S0167-2738(02)00686-0Search in Google Scholar
[12] N.Yabuuchi, K.Yamamoto, K.Yoshii, I.Nakai, T.Nishizawa, A.Omaru, T.Toyooka, S.Komaba: J. Electrochem. Soc.160 (2013) A39. 10.1149/2.018305jesSearch in Google Scholar
[13] R.D.Shannon: Acta Crystallogr., Sect. A: Found. Crystallogr.A32 (1976) 751. 10.1107/S0567739476001551Search in Google Scholar
[14] C.D.W.Jones, E.Rossen, J.Dahn: Solid State Ionics68 (1994) 65. 10.1016/0167-2738(94)90235-6Search in Google Scholar
[15] S.Madhavi, G.V.S.Rao, B.V.R.Chowdari, S.F.Y.Li: Electrochim. Acta48 (2002) 219. 10.1016/S0013-4686(02)00594-7Search in Google Scholar
[16] N.Amdouni, H.Zarrouk, C.Julien: Br. Ceram. Trans.27 (2003) 102. 10.1179/096797803225009229Search in Google Scholar
[17] M.Zou, M.Yoshio, S.Gopukumar, J.I.Yamaki: Chem. Mater.17 (2005) 1284. 10.1021/cm048734oSearch in Google Scholar
[18] S.Gopukumar, Y.Jeong, K.B.Kim: Solid State Ionics159 (2003) 223. 10.1016/S0167-2738(03)00081-XSearch in Google Scholar
[19] H.Konishi, M.Yoshikawa, T.Hirano: J. Power Sources244 (2013) 23. 10.1016/j.jpowsour.2013.05.004Search in Google Scholar
[20] S.A.Needham, G.X.Wang, H.K.Liu, V.A.Drozd, R.S.Liu: J. Power Sources174 (2007) 828. 10.1016/j.jpowsour.2007.06.228Search in Google Scholar
[21] L.Lutterotti, S.Matthies, H.R.Wenk: Int. Union of Crystallogr. CPD Newsletters21 (2011) 14 Version 2.33.Search in Google Scholar
[22] E.D.Jeong, M.Won, Y.Shim: J. Power Sources70 (1998) 70. 10.1016/S0378-7753(97)02667-0Search in Google Scholar
[23] M.Sathiya, A.Prakash, K.Ramesha, A.Shukla: Mater.2 (2009) 857. 10.3390/ma2030857Search in Google Scholar
[24] A.K.Arof: J. Alloys Compd.449 (2008) 288. 10.1016/j.jallcom.2005.12.129Search in Google Scholar
[25] C.Pan, Y.J.Lee, B.Amundsen, C.P.Grey: Chem. Mater.14 (2002) 2289. 10.1021/cm011623uSearch in Google Scholar
[26] S.H.Kim, C.S.Kim: J. Electroceram.23 (2009) 254. 10.1007/s10832-008-9414-5Search in Google Scholar
[27] G.T.K.Fey, J.G.Chen, T.P.Kumar: J. Appl. Electrochem.35 (2005) 177. 10.1007/s10800-004-5822-7Search in Google Scholar
[28] S.Madhavi, G.V.S.Rao, B.V.R.Chowdari, S.F.Y.Li: J. Electrochem. Soc.148 (2001) A1279. 10.1149/1.1410968Search in Google Scholar
[29] B.Huang, Y.I.Jang, Y.M.Chiang, D.R.Sadoway: J. Appl. Electrochem.28 (1998) 1365. 10.1023/A:1003443108681Search in Google Scholar
[30] W.S.Yoon, K.B.Kim: J. Power Sources81–82 (1999) 517. 10.1016/S0378-7753(98)00226-2Search in Google Scholar
[31] P.G.Bruce, M.Y.Saidi: J. Electroanal. Chem.322 (1992) 93. 10.1016/0022-0728(92)80069-GSearch in Google Scholar
[32] M.D.Levi, G.Salitra, B.Marcowsky, H.Teller, D.Aurbach, U.Eider, L.Eider: J. Electrochem. Soc.146 (1999) 1279. 10.1149/1.1391759Search in Google Scholar
[33] M.D.Levi, K.Gamolsky, D.Aurbach, U.Eider, R.Oesten: Electrochim. Acta45 (2000) 1781. 10.1016/S0013-4686(99)00402-8Search in Google Scholar
[34] F.Nobili, F.Croce, B.Scrosati, R.Marassi: Chem. Mater.13 (2001) 1642. 10.1021/cm000600xSearch in Google Scholar
[35] F.Nobili, R.Tossici, F.Croce, B.Scrosati, R.Marassi: J. Power Sources94 (2001) 238. 10.1016/S0378-7753(00)00592-9Search in Google Scholar
[36] C.A.Marianetti, G.Kotliar, G.Ceder: Nat. Mater.3 (2004) 627. 10.1038/nmat1178Search in Google Scholar PubMed
[37] S.Valanarasu, R.Chandramohan: J. Alloys Compd.494 (2010) 434. 10.1016/j.jallcom.2010.01.070Search in Google Scholar
[38] Z.Chen, J.R.Dahn: Electrochem. Solid-State Lett.5 (2002) A213. 10.1149/1.1498969Search in Google Scholar
© 2014, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Phase equilibria studies of the “MnO”–Al2O3–SiO2 system in equilibrium with metallic alloy. Part 1: Development of the technique and determination of liquidus isotherms between 1 423 K and 1 523 K
- Casting process optimization of a bimetal wear-resistant block using liquid–solid processing
- Characteristics of melt convection during Kyropoulos sapphire crystal growth
- A method for the formation of intergranular crystalline phases in liquid phase sintering
- Corrosion resistance of laser treated titanium alloy with B4C particles at the surface
- Effect of Cr and Mo doping on the electrochemical properties of freeze-dried LiCoO2
- Inhibition properties and adsorption behavior of olive leaf extract on N80 carbon steel in CO2-saturated brine solution
- Tribological behavior of Fe3Al-60 wt.% Fe3AlC0.5 composite under air and vacuum conditions
- Improving the surface topography of mild steel with the burnishing process
- Additional small-scale boundary effects on free vibration of carbon nanotubes and their macroscopic energy meaning
- Aqueous soluble gold nanoparticle synthesis using polyethyleneimine and reduced glutathione
- DGM News
- Personal
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Phase equilibria studies of the “MnO”–Al2O3–SiO2 system in equilibrium with metallic alloy. Part 1: Development of the technique and determination of liquidus isotherms between 1 423 K and 1 523 K
- Casting process optimization of a bimetal wear-resistant block using liquid–solid processing
- Characteristics of melt convection during Kyropoulos sapphire crystal growth
- A method for the formation of intergranular crystalline phases in liquid phase sintering
- Corrosion resistance of laser treated titanium alloy with B4C particles at the surface
- Effect of Cr and Mo doping on the electrochemical properties of freeze-dried LiCoO2
- Inhibition properties and adsorption behavior of olive leaf extract on N80 carbon steel in CO2-saturated brine solution
- Tribological behavior of Fe3Al-60 wt.% Fe3AlC0.5 composite under air and vacuum conditions
- Improving the surface topography of mild steel with the burnishing process
- Additional small-scale boundary effects on free vibration of carbon nanotubes and their macroscopic energy meaning
- Aqueous soluble gold nanoparticle synthesis using polyethyleneimine and reduced glutathione
- DGM News
- Personal