Startseite Effect of rate of deformation on electromagnetic radiation during quasi-static compression of sintered aluminium preforms
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of rate of deformation on electromagnetic radiation during quasi-static compression of sintered aluminium preforms

  • Sujeet Kumar Mishra , Vinay Sharma und Ashok Misra
Veröffentlicht/Copyright: 8. März 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper presents some experimental results on the intermittent electromagnetic radiation (EMR) characteristics of sintered aluminium powder preforms under quasi-static compression. The stress level within the gross elastic limit and yielding of the partially compact preforms at which first EMR emission is observed, bears a distinct parabolic relation with the rate of compressive deformation. These observations can be developed into a new technique to detect the compactness of sintered metal powder preforms for industrial components. Further, each successive intermittent EMR emission at all rates of deformation requires increasing incremental strain energy during progressive plastic deformation. The electromagnetic energy release rate decreases sharply as the rate of deformation is increased and then attains a more or less constant value at higher rates of deformation. These results appear significant in understanding the mechanism of plastic deformation in metal powder preforms at the microscopic level, not yet reported in the literature.


* Correspondence address, Sujeet Kumar Mishra, Department of Mechanical Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, India, Tel.: +91-9431927250, Fax: +91-06512275401, E-mail:

References

[1] V.S.Chauhan, A.Misra: Int. J. Mat. Res. (formerly Z. Metallkd.)101 (2010) 7. 10.3139/146.110355Suche in Google Scholar

[2] A.Misra: Indian J. Pure and Appl. Phys.11 (1973) 419.Suche in Google Scholar

[3] A.Misra: Nature254 (1975) 133. 10.1038/254133a0Suche in Google Scholar

[4] A.Misra: cited in “Ninth Yearbook to the Encyclopedia of Science and Technology”, Edizioni Scientific E Techniche, Mondadori, Italy1975.Suche in Google Scholar

[5] A.Misra: Phys. Lett.62A (1977) 234.10.1016/0375-9601(77)90781-2Suche in Google Scholar

[6] A.Misra: Appl. Phys.16 (1978) 195. 10.1007/BF00930387Suche in Google Scholar

[7] A.Misra: J. Sci. Ind. Res.40 (1981) 22.10.2307/20554813Suche in Google Scholar

[8] A.Misra, S.Ghosh: Indian J. Pure Appl. Phys.18 (1980) 851.Suche in Google Scholar

[9] A.Misra, S.Ghosh: Appl. Phys.23 (1981) 387. 10.1007/BF00903221Suche in Google Scholar

[10] A.Misra, B.G.Varshney: J. Magn. Magn. Mater.89 (1990) 159. 10.1016/0304-8853(90)90720-BSuche in Google Scholar

[11] A.Misra, A.Kumar: Int. J. Fract.127 (2004) 387. 10.1023/B:FRAC.0000037676.32062.cbSuche in Google Scholar

[12] B.Srilakshmi, A.Misra: Electromagnetic Radiation during Crack Propagation in metals – A New trend in the development of Smart materials, Proceedings of International Symposium on Smart Materials and Systems, Chennai, India (2004).Suche in Google Scholar

[13] B.Srilakshmi, A.Misra: Mater. Sci. Eng. A404 (2005) 99. 10.1016/j.msea.2005.05.100Suche in Google Scholar

[14] B.Srilakshmi, A.Misra: Manuf. Tech. Res. Int. J.1 (2005) 97.Suche in Google Scholar

[15] B.Srilakshmi, A.Misra: Development of Smart materials through Electromagnetic Radiation in metal coating, Proceedings of International Symposium on Intelligence based Materials and Manufacturing, Ranchi, India (2005). PMid:16050930Suche in Google Scholar

[16] A.Kumar, A.Misra: J. Magn. Magn. Mater.285 (2005) 71. 10.1016/j.jmmm.2004.07.017Suche in Google Scholar

[17] R.Kumar, A.Misra: J. Zhejiang Univ. Sci. A7 (11) (2006) 1800. 10.1631/jzus.2006.A1800Suche in Google Scholar

[18] R.Kumar, A.Misra: A New Approach for Smart Sensors in Design against Metallic Failure, International Conference on Resource Utilization and Intelligent System, (2006).Suche in Google Scholar

[19] R.Kumar, A.Misra: Mater. Sci. Eng. A454–455 (2007) 203. 10.1016/j.msea.2006.11.011Suche in Google Scholar

[20] V.S.Chauhan, A.Misra: J. Mater. Sci.43 (2008) 5634. 10.1007/s10853-008-2590-5Suche in Google Scholar

[21] V.S.Chauhan, A.Misra: Int J. Micro. Mech. Prep.6 (2011) 486.Suche in Google Scholar

[22] A.A.Tudik, N.P.Valuev: Sov. Tech. Phys. Lett.6 (1980) 37.Suche in Google Scholar

[23] V.P.Dmitriev, V.A.Smirnov, A.A.Vorob'ev, Yu.P.Malyshkov, V.F.Gordeev: Stek. Keram.10 (1982) 10.Suche in Google Scholar

[24] Yu.K.Bivin, V.V.Viktorov, Yu.V.Kulinich, A.S.Chursin: Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela1 (1982) 183.Suche in Google Scholar

[25] O.G.Alekseev, S.G.Lazarev, D.G.Priemskii: Prikl. Mekh. Tekh. Fiz.4 (1984) 145.Suche in Google Scholar

[26] Yu.P.Malyshkov, V.F.Gordeev, V.P.Dmitriev et al.: Zh. Tekhn. Fiz.54 (2) (1984) 336.Suche in Google Scholar

[27] Ya.I.Burak, V.F.Kondrat, V.F.Chekurin, in: Abstr. of the All-Union Sci-Eng. Cong. on Engineering Diagnostics [in Russian], Dnepropetrovsk (1985) 85.Suche in Google Scholar

[28] V.F.Zhuravlev: Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela6 (1985) 101.Suche in Google Scholar

[29] J.T.Dickinson, L.C.Jenson, S.K.Bhattacharya: J. Vac. Sci. Technol.3 (1985) 1398. 10.1116/1.572788Suche in Google Scholar

[30] V.Jagasivamani: Some studies on the electromagnetic and acoustic emissions associated with deformation and fracture of metallic materials, Ph.D. Dissertation, I.I.T. Madras, India (1987).Suche in Google Scholar

[31] V.Jagasivamani, K.J.Iyer: Mater. Lett.6 (1988) 418. 10.1016/0167-577X(88)90043-2Suche in Google Scholar

[32] D.V.Alekseev, P.V.Egorov: Fiz.-Tekh. Probl. Razrab. Polezn. Iskop.6 (1993) 3.Suche in Google Scholar

[33] B.Venkataraman, B.Raj, C.K.Mukhopadhyay: J. Korean Soc. Nondestructive Testing22 (2002) 609.Suche in Google Scholar

[34] Ya.I.Burak, V.F.Kondrat, O.R.Hrytsyna: Mater. Sci.43 (4) (2007) 449. 10.1007/s11003-007-0054-8Suche in Google Scholar

[35] S.Muthukumaran, P.Kumar, V.K.Pandey, S.K.Mukherjee: Int. J. Adv. Manuf. Technol.36 (2008) 249. 10.1007/s00170-006-0840-8Suche in Google Scholar

[36] D.Lihong, XuBinshi, D.Shiyun, C.Qunzhi, W.Dan: NDT&E Int.41 (2008) 184. 10.1016/j.ndteint.2007.10.003Suche in Google Scholar

[37] M.I.Molotskii: Sov. Tech. Phys. Lett.6 (1980) 22.Suche in Google Scholar

[38] W.Brown, M.Schmidt, P.Dzwilewski, T.Samaras: Electromagnetic Emissions in Case of Detonation of Metal Encased Explosives. Proceedings of 14th APS Topical Conference on Shock compression of Condensed Matter, Baltimore, MD (2005).Suche in Google Scholar

[39] W.Brown, M.Schmidt, K.Calahan: Electromagnetic Radiation From The High Strain Rate Fracture Of Mild Carbon-Steel, Proceedings of 14th APS Topical Conference on Shock compression of Condensed Matter, Baltimore, MD (2005).Suche in Google Scholar

[40] B.Srilakshmi, A.Misra: J. Mater. Sci.40 (2005) 6079. 10.1007/s10853-005-1293-4Suche in Google Scholar

[41] A.Misra, R.C.Prasad, V.S.Chauhan, B.Srilakshmi: Int. J. Fracture145 (2007) 99. 10.1007/s10704-007-9107-0Suche in Google Scholar

[42] A.Misra, R.C.Prasad, V.S.Chauhan, R.Kumar: Mech. Mat.42 (2010) 505. 10.1016/j.mechmat.2010.01.005Suche in Google Scholar

[43] G.E.Dieter: Mechanical Metallurgy, McGraw-Hill Book Co., London (1998) 295.Suche in Google Scholar

[44] R.J.Green: Int. J. Mech. Sci.14 (1972) 215. 10.1016/0020-7403(72)90063-XSuche in Google Scholar

[45] J.J.Park: Int. J. Mech. Sci.37 (7) (1995) 709. 10.1016/0020-403(94)00101-0Suche in Google Scholar

[46] L.Hua, X.Qin, H.Mao, Y.Zhao: J. Mat. Proc. Technol.180 (2006) 174. 10.1016/j.jmatprotec.2006.06.001Suche in Google Scholar

Received: 2013-07-14
Accepted: 2013-09-02
Published Online: 2014-03-08
Published in Print: 2014-03-11

© 2014, Carl Hanser Verlag, München

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111014/html
Button zum nach oben scrollen