Synthesis and characterization of nanocristalline Fe-40 at.% Si alloy prepared by high energy ball milling
-
Lotfi Faghi
, Salim Triaa , Fatiha Siahmed und Mohamed Azzaz
Abstract
Fe60Si40 (at.%) alloys were synthesised using a planetary ball mill. X-ray diffraction was used to identify and characterise various phases formed during the milling process. Mössbauer and electromagnetic methods were used to characterise the variations in structure and their influence on the local change of magnetic properties. The shape of hyperfine field distributions used to describe the Mössbauer spectra is discussed. It was found that after 4 h of milling, α-FeSi and Fe3Si starts to form. The coexistence of the α-FeSi phase and Fe3Si was found between 8 and 16 h. After 32 h of milling, the powder was completely transformed into the alloy phase (Fe3Si). The value of the mean particle size of our samples decreases with increasing milling time. It reaches the value of 0.42 μm after 56 h of milling. The crystallite size was reduced to 13 nm after milling. The coercitive field HC decreases with increased milling time.
References
[1] Y.Yoshizawa, S.Oguma, K.Yamauchi: J. Appl. Phys. 64 (1988) 6044. 10.1063/1.342149Suche in Google Scholar
[2] Y.Miura, S.Fukuyama, A.Gucsik: J. Mat. Proc. Technol. 851–3 (1999) 188. 10.1016/S0924-0136(98)00289-1Suche in Google Scholar
[3] T.R.Chueva, N.P.Dyakonova, V.V.Molokanov, T.A.Sviridova: J. Alloys Compd. 434–435 (2007) 327.Suche in Google Scholar
[4] G.Yang, R.Wu, J.Chen, F.Song, Y.Pan: Mater. Chem. Phys. 1062–3 (2007) 236. 10.1016/j.matchemphys.2007.05.040Suche in Google Scholar
[5] Y.F.Liang, J.P.Lin, F.Ye, Y.J.Li, Y.L.Wang, G.L.Chen: J. Alloys. Compd. 5041 (2010) 476. 10.1016/j.jallcom.2010.03.075Suche in Google Scholar
[6] G.Xie, L.Yuan, P.Wang, B.Zhang, P.Lin, H.Lu: J. Non-Cryst. Solids356 (2010) 83. 10.1016/j.jnoncrysol.2009.10.007Suche in Google Scholar
[7] A. GarcíaEscorial, P.Adeva, M.C.Cristina, A.Martín, F.Carmona, F.Cebollada, V.E.Martín, M.Leonato, J.M.González: Mater. Sci. Eng. A134 (1991) 1394. 10.1016/0921-5093(91)90998-3Suche in Google Scholar
[8] C.G.Kuhrt, L.Shultz: IEEE Trans. Magn. 29 (1993) 2667. 10.1109/20.280831Suche in Google Scholar
[9] C.G.Kuhrt, L.Schultz: J. Appl. Phys. 71 (1992) 1896. 10.1063/1.351177Suche in Google Scholar
[10] G.Herzer: IEEE Trans. Magn. 265 (1990) 1397. 10.1109/20.104389Suche in Google Scholar
[11] J.S.Benjamin: Metall. Trans. 1 (1970) 2943.10.1007/BF03037835Suche in Google Scholar
[12] Z.Bensebaa, B.Bouzabata, A.Otmani, A.Djekoun, A.Kihal, J.M.Greneche: Phys. Proc. 2 (2009) 649. 10.1016/j.phpro.2009.11.006Suche in Google Scholar
[13] M.Cherigui, N.E.Fenineche, C.Coddet: Surf. Coat. Technol. 192 (2005) 19. 10.1016/j.surfcoat.2004.02.023Suche in Google Scholar
[14] Malvern Instruments Ltd., Mastersizer 2000 - Unified System for Particle Sizing, (2003)Suche in Google Scholar
[15] R.S.Ward-Smith, N.Gummery, A.F.Rawle: 4th World Congress on Particle Technology in Sydney, Australia (2002)Suche in Google Scholar
[16] X-Pert Plus software - Program for Crystallography and Rietveld Analysis, Philips Analytical (1999)Suche in Google Scholar
[17] G.K.Williamson, W.H.Hall: Acta Metall. 1 (1953) 22. 10.1016/0001-6160(53)90006-6Suche in Google Scholar
[18] K.Lagarek, D.Rancourt: Recoil Software, University of Ottawa (1998)Suche in Google Scholar
[19] N.Stevulova, A.Buchal, P.Petrovic, K.Tkacova, V.Sepelak: J. Magn. Magn. Mater. 203 (1999) 190. 10.1016/S0304-8853(99)00224-3Suche in Google Scholar
[20] Z.Bensebaa, B.Bouzabata, A.Otmani: J. Alloys Compd. 4691–2 (2009) 24. 10.1016/j.jallcom.2008.01.151Suche in Google Scholar
[21] B.D.Cullity: Elements of X-ray Diffraction, Addison-Wesley (1978) 10.1119/1.1934486Suche in Google Scholar
[22] H.J.Fecht: Nanostruct. Mater. 16 (1995) 33. 10.1016/0965-9773(95)00027-5Suche in Google Scholar
[23] B.V.Neamtu, O.Isnard, I.Chicinas, V.Pop: J. Alloys Compd. 509 (2011) 3632. 10.1016/j.jallcom.2010.12.126Suche in Google Scholar
[24] B.Prabhu, C.Suryanarayana, L.Ana, R.Vaidyanathan: Mater. Sci. Eng. A425 (2006) 192. 10.1016/j.msea.2006.03.066Suche in Google Scholar
[25] R.M.Davis, B.McDermont, C.C.Koch: Met. Trans. A19 (1988) 28. 10.1007/BF02647712Suche in Google Scholar
[26] A.Guittoum, A.Layadi, A.Bourzami, H.Tafat, N.Souami, S.Boutarfaia, D.Lacour: J. Magn. Magn. Mater. 320 (2008) 1385. 10.1016/j.jmmm.2007.11.021Suche in Google Scholar
[27] A.Guittoum, A.Layadi, H.Tafat, A.Bourzami, N.Souami, O.Lenoble: Philos. Mag. 88–7 (2008) 1085.Suche in Google Scholar
[28] A.Otmani, B.Bouzabata, A.Djekoun, S.Alleg: Ann. Chim. Sci. Mater. 22 (1997) 201.Suche in Google Scholar
[29] E.Japa, K.Kroo: Phys. Stat. Sol. (b)96 (1979) 65. 10.1002/pssb.2220960247Suche in Google Scholar
[30] M.Abdellaoui, C.Djega-Mariadassou, E.Gaffet: J. Alloys Compd. 259 (1997) 241. 10.1016/S0925-8388(97)00102-3Suche in Google Scholar
[31] R.R.Rodríguez, G.A.Pérez Alcázar, H.Sánchez, J.M.Greneche: Microelectron. J. 39 (2008) 1311. 10.1016/j.mejo.2007.07.114Suche in Google Scholar
[32] T.Zhou, J.Zhang, J.Xu, Z.Yu, G.Gu, D.Wang, H.Huang, Y.Du, J.Wang, Y.Jiang: J. Magn. Magn. Mater. 164 (1996) 219. 10.1016/S0304-8853(96)00384-8Suche in Google Scholar
[33] S.H.Kim, Y.J.Lee, B.H.Lee, K.H.Lee, K.Narasimhan, Y.Do Kim: J. Alloys Compd. 424 (2006) 204. 10.1016/j.jallcom.2005.10.085Suche in Google Scholar
© 2014, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Microwave absorbing materials based on polyaniline composites: a review
- Atomic mobilities in fcc Cu–Mn–Ni–Zn alloys and their characterizations of uphill diffusion and zero-flux plane phenomena
- Synthesis and characterization of nanocristalline Fe-40 at.% Si alloy prepared by high energy ball milling
- An investigation of the microstructure and hydrogenation/dehydrogenation properties of ball-milled CeMg12 alloys with Ni powders
- Nanoscratch characterization of indium nitride films
- Role of axial thrust in the formation of microstructure and fracture surface of the weld zone in friction stir welded AA6063 aluminium alloy
- Microstructures and corrosion resistance of three typical superlight Mg–Li alloys
- The effect of magnetron-deposited Al2O3 coating on the corrosion resistance of Ti–Al alloys in a 9 %O2 + 0.2 %HCl + 0.08 %SO2 + N2 atmosphere
- Homogenization of direct chill cast AlSi1MgMn billets
- Effect of rare earth Y addition on two-phase Ni53Mn22Co6Ga19 high-temperature shape memory alloy
- Thermal treatment induced transition from Zn3(OH)2(BDC)2 (MOF-69c) to Zn4O(BDC)3 (MOF-5)
- Thermal investigation of alumina-based pastes and refractory mixturesd
- Short Communications
- One-step magnetic modification of non-magnetic solid materials
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Microwave absorbing materials based on polyaniline composites: a review
- Atomic mobilities in fcc Cu–Mn–Ni–Zn alloys and their characterizations of uphill diffusion and zero-flux plane phenomena
- Synthesis and characterization of nanocristalline Fe-40 at.% Si alloy prepared by high energy ball milling
- An investigation of the microstructure and hydrogenation/dehydrogenation properties of ball-milled CeMg12 alloys with Ni powders
- Nanoscratch characterization of indium nitride films
- Role of axial thrust in the formation of microstructure and fracture surface of the weld zone in friction stir welded AA6063 aluminium alloy
- Microstructures and corrosion resistance of three typical superlight Mg–Li alloys
- The effect of magnetron-deposited Al2O3 coating on the corrosion resistance of Ti–Al alloys in a 9 %O2 + 0.2 %HCl + 0.08 %SO2 + N2 atmosphere
- Homogenization of direct chill cast AlSi1MgMn billets
- Effect of rare earth Y addition on two-phase Ni53Mn22Co6Ga19 high-temperature shape memory alloy
- Thermal treatment induced transition from Zn3(OH)2(BDC)2 (MOF-69c) to Zn4O(BDC)3 (MOF-5)
- Thermal investigation of alumina-based pastes and refractory mixturesd
- Short Communications
- One-step magnetic modification of non-magnetic solid materials
- DGM News
- DGM News