CBD grown ZnO nanostructures: effects of solution temperature
-
Süleyman Kahraman
In the present study, textured and highly oriented nano-structured ZnO films were synthesized via chemical bath deposition. The effects of solution temperature have been investigated. It is concluded that the solution temperature is crucial to the crystallography, morphology, electrical and optical behaviors of the ZnO films. X-ray diffraction studies and scanning electron microscopy observations revealed that the structures grown at 95°C had a large aspect ratio, a faster c-axis growth and better vertical orientation than those obtained at relatively lower temperature. The variations depending on solution temperature have been provisionally explained theoretically. Electrical resistivity and activation energies of the films decreased with increasing solution temperature. The variation was attributed to enhancement in the crystallographic structure with increasing growth temperature and to delocalized phonon states. Through the optical absorption spectra a red shift was observed and attributed to crystal defects, non-stochiometry that Zn+2 ions substitute oxygen vacancies and delocalized phonon states.
References
[1] BayansalF., KahramanS., ÇankayaG., ÇetinkaraH.A., GüderH.S., ÇakmakH.M.: J. Alloys Compd.509 (2011) 2094. 10.1016/j.jallcom.2010.10.146Suche in Google Scholar
[2] MorkoçH., ÖzgürÜ.: Zine Oxide: Fundamentals, Materials and Device Technology, Wiley-VCH, Weinheim (2004).15306067Suche in Google Scholar
[3] KlingshirnC.: ChemPhysChem12 (2007) 782.1742981910.1002/cphc.200700002Suche in Google Scholar
[4] NortonD.P., HeoY.W., IvillM.P., IpK., PeartonS.J., ChisholmM.F., SteinerT.: Mater. Today7 (2004) 34. 10.1016/S1369-7021(03)00052-XSuche in Google Scholar
[5] SaitoN., HanedaH., SekiguchiT., OhashiN., SakaguchiI., KoumotoK.: Adv. Mater.14 (2002) 418. 10.1002/1521-4095(20020318)14:6<418::AID-ADMA418>3.0.CO;2-KSuche in Google Scholar
[6] LiangS., ShengH., LiuY., HioZ., LuY., ShenH.: J. Cryst. Growth225 (2001) 110. 10.1016/S0022-0248(01)00830-2Suche in Google Scholar
[7] HoffmanR.L., NorrisB.J., WagerJ.F.: Appl. Phys. Lett.82 (2003) 733. 10.1063/1.1542677Suche in Google Scholar
[8] LokhandeC.D., GondkarP.M., ManeR.S., ShindeV.R., HanS.: J. Alloys Compd.475 (2009) 304. 10.1016/j.jallcom.2008.07.025Suche in Google Scholar
[9] Sanchez-JuarezA., Tiburcio-SilverA., OrtizA.: Sol. Energy Mater. Sol. Cells52 (1998) 301. 10.1016/S0927-0248(97)00246-8Suche in Google Scholar
[10] SunY., FugeG.M., FoxN.A., RileyD.J., AshfoldM.N.R.: Adv. Mater.17 (2005) 2477. 10.1002/adma.200400839Suche in Google Scholar
[11] BaxterJ.B., AydilE.S.: J. Cryst. Growth274 (2005) 407. 10.1016/j.jcrysgro.2004.10.014Suche in Google Scholar
[12] LiuS.C., WuJ.J.: J. Mater. Chem.12 (2002) 3125. 10.1039/b203871dSuche in Google Scholar
[13] KimH.S., LugoF., PeartonS.J., NortonD.P., WangY.L., RenF.: Appl. Phys. Lett.92 (2008) 112108. 10.1063/1.2828202Suche in Google Scholar
[14] WangJ.M., GaoL.: J. Mater. Chem.13 (2003) 2551. 10.1039/b307565fSuche in Google Scholar
[15] YeJ.D., GuS.L., ZhuS.M., LiuW., LiuS.M., ZhangR., ShiY., ZhengY.D.: Appl. Phys. Lett.90 (2007) 174107. 10.1063/1.2433026Suche in Google Scholar
[16] ZhangZ., MengG., XuQ., HuY., WuQ., HuZ.: J. Phys. Chem. C114 (2010) 189. 10.1021/jp100225cSuche in Google Scholar
[17] DobkinD.M., ZurawM.K.: Principles of Chemical Vapor Deposition Kluwer Academic Publishers, Dordrecht (2003).Suche in Google Scholar
[18] RajamathiM., SeshadriR.: Curr. Opin. Solid State Mater. Sci.6 (2002) 337. 10.1016/S1359-0286(02)00029-3Suche in Google Scholar
[19] MohamedG., El-MoizA.B., RashadM.: Physica B370 (2005) 158. 10.1016/j.physb.2005.09.006Suche in Google Scholar
[20] HamadaT., ItoA., FujiiE., ChuD., KatoK., MasudaY.: J. Cryst. Growth311 (2009) 3687. 10.1016/j.jcrysgro.2009.06.004Suche in Google Scholar
[21] QinZ., LiaoQ., HuangY., TangL., ZhangX., ZhangY.: Mater. Chem. Phys.123 (2010) 811. 10.1016/j.matchemphys.2010.05.065Suche in Google Scholar
[22] CullityB.D., StockS.R.: Elements of X-ray Diffraction, Prentice-Hall Inc., Indiana (1956).Suche in Google Scholar
[23] Suresh KumarP., DhayalRajA., MangalarajD., NatarajD., PonpandianN., LiLin, ChabrolG.: Appl. Surf. Sci.257 (2011) 6678. 10.1016/j.apsusc.2011.02.101Suche in Google Scholar
[24] Van Der DriftA.: Evolutionary Selection, Philips Res. Rep.22 (1967) 267.Suche in Google Scholar
[25] PodlogarM., RichardsonJ.J., VengustD., DaneuN., SamardzijaZ., BernikS., RecnikA.: Adv. Func. Mater.22 (2012) 3098. 10.1002/adfm.201200214Suche in Google Scholar
[26] BloodP., OrtonJ.W.: The Electrical Characterization of SemiconductorsAcademic Press, London (1992).Suche in Google Scholar
[27] OzgurU., AlivovY.I., LiuC., TekeA., ReshchikovM.A., DoganS., AvrutinV., ChoS.J., MorkocH.: J. Appl. Phys.98 (2005) 041301. 10.1063/1.1992666Suche in Google Scholar
[28] GeorgeJ., RadhakrishnanM.K.: Solid State Commun.33 (1980) 987. 10.1016/0038-1098(80)90296-3Suche in Google Scholar
[29] ÇaglarM., IlicanM., ÇaglarY., YakuphanogluF.: J. Alloys Compd.509 (2011) 3177. 10.1016/j.jallcom.2010.12.038Suche in Google Scholar
[30] HongY.W., KimJ.H.: Ceram. Int.30 (2004) 1301. 10.1016/j.ceramint.2003.12.028Suche in Google Scholar
[31] ÇakmakH.M., KahramanS., BayansalF., ÇetinkayaS.: Phil. Mag. Lett.92 (2012) 288. 10.1080/09500839.2012.661887Suche in Google Scholar
[32] MusatV., FortunatoE., PuricaM., MaziluM., Botelho do RegoA.M., DiaconuB., BusaniT.: Mater. Chem. Phys.132 (2012) 339. 10.1016/j.matchemphys.2011.11.026Suche in Google Scholar
[33] IlıcanS., ÇağlarM., ÇağlarY.: Appl. Surf. Sci.256 (2010) 7204. 10.1016/j.apsusc.2010.05.052Suche in Google Scholar
[34] MuivaC.M., SathiarajT.S., MaabongK.: Ceram. Int.37 (2011) 555. 10.1016/j.ceramint.2010.09.042Suche in Google Scholar
© 2013, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Thermomechanical treatments and surface treatments to enhance the mechanical properties and fatigue performance of recycled cp-Ti
- Development of an atomic mobility database for liquid phase in multicomponent Al alloys: focusing on binary systems
- Surface tension of a liquid metal–oxygen system using a multilayer free energy model
- The influence of microstructure and mechanical properties on the machinability of martensitic and bainitic prehardened mould steels
- Influence of the strain rate on deformation mechanisms of an AZ31 magnesium alloy
- Weldability and joining characteristics of AISI 420/AISI 1020 steels using friction welding
- Mechanism of porosity growth during homogenisation in single crystal nickel-based superalloys
- Analysis of thermal stability after occurrence of absolute solute trapping in undercooled Co–Cu alloy
- Phase constitutions of rapid solidification/powder metallurgy Mg–Zn–Ca–RE alloys
- The catalytic effect of iron on the graphitization of diamonds
- CBD grown ZnO nanostructures: effects of solution temperature
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Thermomechanical treatments and surface treatments to enhance the mechanical properties and fatigue performance of recycled cp-Ti
- Development of an atomic mobility database for liquid phase in multicomponent Al alloys: focusing on binary systems
- Surface tension of a liquid metal–oxygen system using a multilayer free energy model
- The influence of microstructure and mechanical properties on the machinability of martensitic and bainitic prehardened mould steels
- Influence of the strain rate on deformation mechanisms of an AZ31 magnesium alloy
- Weldability and joining characteristics of AISI 420/AISI 1020 steels using friction welding
- Mechanism of porosity growth during homogenisation in single crystal nickel-based superalloys
- Analysis of thermal stability after occurrence of absolute solute trapping in undercooled Co–Cu alloy
- Phase constitutions of rapid solidification/powder metallurgy Mg–Zn–Ca–RE alloys
- The catalytic effect of iron on the graphitization of diamonds
- CBD grown ZnO nanostructures: effects of solution temperature
- DGM News
- DGM News