Thermally activated redox-processes in V2O5-x under high oxygen partial pressures investigated by means of impedance spectroscopy and Rutherford backscattering
-
Manuel Harth
, Rüdiger Mitdank , Daniela Habel , Oliver Görke , Michael Tovar , Helmut Winter und Helmut Schubert
Electrochemical methods have been applied in the catalytic system V2O5 in order to investigate the redox properties and their correlation with catalytic properties. Temperature programmed conductivity measurements using electrochemical impedance spectroscopy enabled us to determine the onset of a thermally induced reduction at about 380°C. Rutherford backscattering analysis provides evidence for a reduction from V+5 to V+4. Experiments under different oxygen partial pressures showed that the vanadyl oxygen is involved in the reduction process and it was possible to determine the energy of formation for an oxygen vacancy as 1.23 ± 0.03 eV. The removability of the vanadyl oxygen is assumed to be a key factor for the catalytic activity so that it can be characterized by macroscopic transport properties.
References
[1] WeckhuysenB.M., KellerD.E.: Catal. Today78 (2003) 25. 10.1016/S0920-5861(02)00323-1Suche in Google Scholar
[2] BondG.C., TahirF.: Appl. Catal.71 (1991) 1. 10.1016/0166-9834(91)85002-DSuche in Google Scholar
[3] MarsP., van KrevelenD.W.: Chem. Eng. Sci. Special Suppl.3 (1954) 41.Suche in Google Scholar
[4] HaberJerzy in: ErtlG., KnözingerH., SchüthF., WeitkampJ. (Eds.), Handbook of Heterogeneous Catalysis, Wiley-VCH, Weinheim (2008) 3367.Suche in Google Scholar
[5] DoornkampC., ClementM., GaoX., DeoG., WachsI.E., PonecV.: J. Catal.185 (1999) 415. 10.1006/jcat.1999.2490Suche in Google Scholar
[6] NovákováJ.: Cat. Rev. – Sci. Eng.4 (1971) 77. 10.1080/01614947108075486Suche in Google Scholar
[7] JanssenF.J.J.G., van den KerkhofF.M.G., BoschH., RossJ.R.H.: J. Phys. Chem.91 (1987) 5921. 10.1021/j100305a020Suche in Google Scholar
[8] ChenK., KhodakovA., YangJ., BellA.T., IglesiaE.: J. Catal.186 (1999) 325. 10.1006/jcat.1999.2510Suche in Google Scholar
[9] HirotaK., KeraY., TerataniS.: J. Phys. Chem.72 (1968) 3133. 10.1021/j100847a002Suche in Google Scholar
[10] ChenK., BellA.T., IglesiaE.: J. Phys. Chem. B104 (2000) 1292. 10.1021/jp0000228Suche in Google Scholar
[11] PerlsteinJ.H.: J. Solid State Chem.3 (1971) 217. 10.1016/0022-4596(71)90031-4Suche in Google Scholar
[12] VolzhenskiiD.S., PashkovskiiM.V.: Sov. Phys. Solid State11 (1969) 950.Suche in Google Scholar
[13] IoffeV.A., PatrinaI.B.: Phys. Status Solidi40 (1970) 389. 10.1002/pssb.19700400140Suche in Google Scholar
[14] NagelsP., DenayerM.: Proc. Xth Int. Conf. Physics Semiconductors (1970) 321.Suche in Google Scholar
[15] HaemersJ., BaetensE., VennikJ.: Phys. Status Solidi (A)20 (1973) 381. 10.1002/pssa.2210200140Suche in Google Scholar
[16] SanchezC., HenryM., GrenetJ.C., LivageJ.: J. Phys. C15 (1982) 7133. 10.1088/0022-3719/15/35/011Suche in Google Scholar
[17] KachiS., TakadaT., KosugeK.: J. Phys. Soc. Jpn.18 (1963) 1839. 10.1143/JPSJ.18.106Suche in Google Scholar
[18] PatrinaI.B., IoffeV.A.: Sov. Phys. Solid State6 (1965) 2581.Suche in Google Scholar
[19] AllersmaT., HakimR., KennedyT.N., MackenzieJ.D.: J. Chem. Phys.46 (1967) 154. 10.1063/1.1840366Suche in Google Scholar
[20] HaberJ., WitkoM., TokarzR.: Appl. Catal., A157 (1997) 3. 10.1016/S0926-860X(97)00017-3Suche in Google Scholar
[21] NovákováJ.: Cat. Rev. – Sci. Eng.4 (1971) 77. 10.1080/01614947108075486Suche in Google Scholar
[22] ZolyanT.S., RegelA.R.: Sov. Phys. Solid State6 (1964) 1189.Suche in Google Scholar
[23] SimardG.L., StegerJ.F., ArnottR.J.: Ind. Eng. Chem.47 (1955) 1424. 10.1021/ie50547a047Suche in Google Scholar
[24] SauerJ., DöblerJ.: Dalton Trans. (2004) 3116.10.1039/B402873BSuche in Google Scholar
[25] TodorovaT.K., Ganduglia-PirovanoM.V., SauerJoachim: J. Phys. Chem. B109 (2005) 23523.1637532710.1021/jp053899lSuche in Google Scholar
[26] BrázdováV., Ganduglia-PirovanoM.V., SauerJ.: J. Phys. Chem. B109 (2005) 23532.1637532810.1021/jp046055vSuche in Google Scholar
[27] TodorovaT.K., Ganduglia-PirovanoM.V., SauerJ.: J. Phys. Chem. C111 (2007) 5141. 10.1021/jp067137hSuche in Google Scholar
[28] HofmannA., Ganduglia-PirovanoM.V., SauerJ.: J. Phys. Chem. C113 (2009) 18191. 10.1021/jp808560pSuche in Google Scholar
[29] EnjalbertR., GalyJ.: Acta Crystallogr., Sect. C: Cryst. Struct. Commun.42 (1986) 1467. 10.1107/S0108270186091825Suche in Google Scholar
[30] RickertH.: Electrochemistry of Solids, Springer-VerlagBerlin (1982).Suche in Google Scholar
[31] MitdankR., HabelD., GörkeO., HarthM., SchubertH., WinterH.: Nucl. Instrum. Methods Phys. Res., Sect. B269 (2011) 345. 10.1016/j.nimb.2010.11.047Suche in Google Scholar
[32] BorosJ.: Z. Phys. A126 (1949) 721.Suche in Google Scholar
[33] IrvineJ.T.S., SinclairD.C., WestA.R.: Adv. Mater.2 (1990) 132. 10.1002/adma.19900020304Suche in Google Scholar
[34] WangC., CaiY., WachsI.E.: Langmuir15 (1999) 1223. 10.1021/la980618aSuche in Google Scholar
[35] BochP., NiepceJ.-C.: Ceramic Materials: processes, properties and applications, ISTE, London (2007).10.1002/9780470612415Suche in Google Scholar
[36] ClauwsP., VennikJ.: Phys. Status Solidi66 (1974) 553. 10.1002/pssb.2220660218Suche in Google Scholar
[37] FiermansL., ClauwsP., LambrechtW., VandenbrouckeL., VennikJ.: Phys. Status Solidi A59 (1980) 485. 10.1002/pssa.2210590211Suche in Google Scholar
[38] GoclonJ., GrybosR., WitkoM., HafnerJ.: Phys. Rev. B79 (2009) 075439. 10.1103/PhysRevB.79.075439Suche in Google Scholar
[39] MacChesneyJ.B., GuggenheimH.J.: J. Phys. Chem. Solids30 (1969) 225. 10.1016/0022-3697(69)90303-5Suche in Google Scholar
[40] HaberJ., WitkoM., TokarzR.: Appl. Catal., A157 (1997) 3. 10.1016/S0926-860X(97)00017-3Suche in Google Scholar
[41] BenmoussaM., IbnouelghaziE., BennounaA., AmezianeE.L.: Thin Solid Films265 (1995) 22. 10.1016/0040-6090(95)06617-9Suche in Google Scholar
[42] WachsI.E., BriandL.E., JehngJ.-M., BurchamL., GaoX.: Catal. Today57 (2000) 323. 10.1016/S0920-5861(99)00343-0Suche in Google Scholar
[43] LambrechtW., Djafari-RouhaniB., LannooM., ClauwsP., FiermansI., VennikJ.: J. Phys. C13 (1980) 2503. 10.1088/0022-3719/13/13/007Suche in Google Scholar
[44] RamanaC.V., HussainO.M., Srinivasulu NaiduB., ReddyP.J.: Thin Solid Films305 (1997) 219. 10.1016/S0040-6090(97)00141-7Suche in Google Scholar
[45] VratnyF., MicaleF.: Trans. Faraday Soc.59 (1963) 2739. 10.1039/tf9635902739Suche in Google Scholar
[46] Ganduglia-PirovanoM.V., HofmannA., SauerJ.: Surf. Sci. Rep.62 (2007) 219. 10.1016/j.surfrep.2007.03.002Suche in Google Scholar
[47] ShahP.R., KhaderM.M., VohsJ.M., GorteR.J.: J. Phys. Chem. C112 (2008) 2613. 10.1021/jp710516dSuche in Google Scholar
© 2013, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Award/Preisverleihung
- The Werner-Köster-Preis 2012
- Original Contributions
- Effect of microstructure on the wear resistance of borided Fe–Cr alloys
- Microstructure evolution in pure aluminium processed by equal channel angular pressing at elevated temperature
- Interfacial reactions between SAC405 and SACNG lead-free solders with Au/Ni(P)/Cu substrate reflowed using the CO2 laser and hot-air methods
- Experimental determination of the phase relations of the Co–Pt–Dy system at 773 K
- Boron partitioning between SiO2–CaO–MgO slags and liquid silicon at controlled nitrogen potential
- Thermally activated redox-processes in V2O5-x under high oxygen partial pressures investigated by means of impedance spectroscopy and Rutherford backscattering
- Effect of aluminium addition on densification behaviour and microstructural features of P/M processed Cu–TiC composites
- Effect of ZrO2 impurity on promoting reactive sintering of ZrB2–SiC–ZrC composites
- Magnetic and electric properties of nanoparticles of Ni-substituted ferrites synthesized using a microwave refluxing process
- Optimisation of total roll power using genetic algorithms in a compact strip production plant
- Modeling the correlation between yield strength, chemical composition and ultimate tensile strength of X70 pipeline steels by means of gene expression programming
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Award/Preisverleihung
- The Werner-Köster-Preis 2012
- Original Contributions
- Effect of microstructure on the wear resistance of borided Fe–Cr alloys
- Microstructure evolution in pure aluminium processed by equal channel angular pressing at elevated temperature
- Interfacial reactions between SAC405 and SACNG lead-free solders with Au/Ni(P)/Cu substrate reflowed using the CO2 laser and hot-air methods
- Experimental determination of the phase relations of the Co–Pt–Dy system at 773 K
- Boron partitioning between SiO2–CaO–MgO slags and liquid silicon at controlled nitrogen potential
- Thermally activated redox-processes in V2O5-x under high oxygen partial pressures investigated by means of impedance spectroscopy and Rutherford backscattering
- Effect of aluminium addition on densification behaviour and microstructural features of P/M processed Cu–TiC composites
- Effect of ZrO2 impurity on promoting reactive sintering of ZrB2–SiC–ZrC composites
- Magnetic and electric properties of nanoparticles of Ni-substituted ferrites synthesized using a microwave refluxing process
- Optimisation of total roll power using genetic algorithms in a compact strip production plant
- Modeling the correlation between yield strength, chemical composition and ultimate tensile strength of X70 pipeline steels by means of gene expression programming
- DGM News
- DGM News