Home Morphology evolution of γ′ precipitates in GTD-111 Ni-based superalloy with heat treatment parameters
Article
Licensed
Unlicensed Requires Authentication

Morphology evolution of γ′ precipitates in GTD-111 Ni-based superalloy with heat treatment parameters

  • Mohamad Berahmand and Seyed Abdolkarim Sajjadi
Published/Copyright: March 30, 2014
Become an author with De Gruyter Brill

Abstract

GTD-111 is an Ni-based superalloy used in manufacturing of gas turbine blades. The superalloy attains appropriate high temperature strength through precipitation hardening. In this research the effect of isothermal aging on the morphology evolution and characteristics of precipitates was investigated. Two different heat treatment cycles were applied to the specimens. In cycle I all samples were solution-treated at 1 200 °C for 4 h and water quenched to obtain supersaturated solid solution. A microstructure containing fine γ′ precipitates was produced after heat treatment cycle I. The second heat treatment, cycle II, consisted of reheating of the specimens in the precipitate partial dissolution zone at 1 150 °C for 2 h to get coarse primary precipitates, and then water quenching to obtain fine secondary precipitates. The precipitate coarsening in the fine and duplex size precipitate distribution was studied by means of aging of the specimens for various times at 1 000 °C. The results showed that during long-term annealing of the single size distribution (Cycle Ι), precipitates line up to reduce interactive free energy and grow to fairly coarse sizes along a direction. In cycle ΙΙ, the precipitates were split into a group of eight small cuboids or pairs of parallel plates and a large number of γ′ particles were closely aligned along a direction.


* Correspondence address, Seyed Abdolkarim Sajjadi, Dept. of Department of Metallurgical and Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Vakil-Abad Blvd., Mashhad, Iran. Tel./Fax: 0098-511-8763305, E-mail:

References

[1] S.A.Sajjadi, S.Nategh: Mater. Sci. Eng. A307 (2001) 158164. 10.1016/S0921-5093(00)01822-0Search in Google Scholar

[2] S.A.Sajjadi, S.Nategh, R.I.L.Guthrie: Mater. Sci. Eng. A325 (2002) 484489. 10.1016/S0921-5093(01)01709-9Search in Google Scholar

[3] I.M.Lifshitz, V.V.Slyozov: J. Phys. Chem. Solids19 (1961) 3550. 10.1016/0022-3697(61)90054-3Search in Google Scholar

[4] C.Wagner: Z. Electrochem.65 (1961) 581591.Search in Google Scholar

[5] A.J.Ardell: Acta Metall.20 (1972) 6171. 10.1016/0001-6160(72)90114-9Search in Google Scholar

[6] P.W.Voorhees, M.E.Glicksman: Acta Metall.32 (1984) 20012011. 10.1016/0001-6160(84)90180-9Search in Google Scholar

[7] Y.Enomoto, M.Tokuyama, K.Kawasaki: Acta Metall.34 (1986) 21192128. 10.1016/0001-6160(86)90157-4Search in Google Scholar

[8] H.J.Ryu, S.H.Hong, J.Weber, J.H.Tundermann: J. Mater. Sci.34 (1999) 329336. 10.1023/A:1004461724568Search in Google Scholar

[9] M.Doi, T.Miyazaki, T.Wakatsuki: Mater. Sci. Eng.74 (1985) 139145. 10.1016/0025-5416(85)90427-6Search in Google Scholar

[10] M.Doi, T.Miyazaki, T.Wakatsuki: Mater. Sci. Eng.67 (1984) 247253. 10.1016/0025-5416(84)90056-9Search in Google Scholar

[11] T.Miyazaki, M.Doi: Mater. Sci. Eng. A110 (1989) 175185. 10.1016/0921-5093(89)90168-8Search in Google Scholar

[12] T.Maebashi, M.Doi: Mater. Sci. Eng. A373 (2004) 7279. 10.1016/j.msea.2003.12.064Search in Google Scholar

[13] W.C.Johnson, J.W.Cahn: Acta Metall.32 (1984) 19251933. 10.1016/0001-6160(84)90174-3Search in Google Scholar

[14] W.C.Johnson, J.K.Lee: Metall. Trans. A10 (1979) 11411149. 10.1007/BF02811659Search in Google Scholar

[15] M.Doi: Prog. Mater. Sci.40 (1996) 79l80. 10.1016/0079-6425(96)00001-1Search in Google Scholar

[16] M.Doi: T. Miyazaki: Mater. Sci. Eng.78 (1986) 8794. 10.1016/0025-5416(86)90082-0Search in Google Scholar

[17] H.A.Feng, H.Biermann, H.Mughrabi: Metall. Trans. A31 (2000) 585597. 10.1007/s11661-000-0002-9Search in Google Scholar

[18] F.R.N.Nabarro: Metall. Trans. A27 (1996) 513530. 10.1007/BF02648942Search in Google Scholar

[19] M.P.Gururajan, T.A.Abinandanan: Acta Mater.55 (2007) 50155026. 10.1016/j.actamat.2007.05.021Search in Google Scholar

[20] N.Matan, D.C.Cox, C.M.F.Rae, R.C.Reed: Acta Mater.47 (1999) 20312045. 10.1016/S1359-6454(99)00093-2Search in Google Scholar

[21] M.Kamaraj, C.Mayr, M.Kolbe, G.Eggeler: Scripta Mater.38 (1998) 589594. 10.1016/S1359-6462(97)00520-4Search in Google Scholar

[22] M.Pollock, A.S.Argon: Acta Metall. Mater.42 (1994) 18591874. 10.1016/0956-7151(94)90011-6Search in Google Scholar

[23] N.Kobayashi, S.Onaka, T.Fujii, M.Kato: Mater. Sci. Eng. A392 (2005) 248253. 10.1016/j.msea.2004.10.042Search in Google Scholar

Received: 2011-3-30
Accepted: 2012-8-9
Published Online: 2014-03-30
Published in Print: 2013-03-14

© 2013, Carl Hanser Verlag, München

Downloaded on 13.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110856/html?lang=en
Scroll to top button