Home Synthesis, structural, optical and thermal analysis of nanostructured ZnO
Article
Licensed
Unlicensed Requires Authentication

Synthesis, structural, optical and thermal analysis of nanostructured ZnO

  • Muniappan Elango , Shanmugam Ranjith , Chinnasamy Balakumar , Kulam Mohammad Prem Nazeer , Sundararajan Vairam and Malaiyandi Thamilselvan
Published/Copyright: March 30, 2014
Become an author with De Gruyter Brill

Abstract

Nanostructured zinc oxide (ZnO) has been synthesized via a one step solution based wet chemical method. Zinc acetate dihydrate (Zn (CH3COO)2 · 2H2O) was used as the precursor and its growth conditions were optimized for the formation of nanostructured ZnO. The powder pattern X-ray diffraction data of synthesized ZnO confirm particles of radius of about 20 nm with wurtzite hexagonal phase and preferential growth along (101) plane. Transmission electron microscopic results support the particle size value obtained through X-ray diffraction study. Clusters of nanostructured ZnO in agglomerated form are observed in scanning electron micrographs. The absorption bands observed at 509 cm−1 and 406 cm−1 in infrared spectra are assigned to ∊M-O of the synthesized compound. The absorption spectrum shows a narrow peak near the band edge in the exciton absorption region at about 371 nm and a blue shift is observed with respect to the bulk exciton absorption, 375 nm. Thermo-gravimetric analysis indicates weight loss corresponding to the formation of ZnO. The mechanism for the growth of nanostructured ZnO in solution has also been discussed.


* Correspondence address, Dr. M. Thamilselvan, Government College of Technology, Anna University of Technology, Coimbatore 641013, Tamilnadu, India, Tel.: +91-9487288567, Fax: +91-422-2575622, E-mail:

References

[1] S.Kim, B.Fisher, H. J.Eisner, M.BawendiJ. Am. Chem. Soc.125 (2005) 11466. PMid: 13129327; 10.1021/ja0361749Search in Google Scholar

[2] B.Q.Wang, X.D.Shan, Q.Fu, J.Iqbal, L.Yan, H.G.Fu, D.P.Yu: Physica E41 (2009) 413417. 10.1016/j.physe.2008.09.001Search in Google Scholar

[3] M.S.Amold, P.H.Avouris, Z.W.Pan, Z.L.Wang: J. Phys. Chem. B107 (2003) 659. 10.1021/jp0271054Search in Google Scholar

[4] Y.F.Gao, M.Nagai: Langmuir22 (2006) 3936. PMid: 16584278; 10.1021/la053042fSearch in Google Scholar

[5] Eric W.Seelig, B.Tang, A.Yamilov, H.Cao, R.P.H.Chan: Mat. Chem. Phys.80/1 (2003) 257.Search in Google Scholar

[6] Z.L.Wang, J.Song: Science312 (2006) 242. PMid: 16614215; 10.1126/science.1124005Search in Google Scholar

[7] D.R.Clarke: J. Am. Ceram. Soc.82 (1999) 485. 10.1111/j.1151-2916.1999.tb01793.xSearch in Google Scholar

[8] M.Singhal, V.Chhabra, P.Kang, D.O.Shah: Mater. Res. Bull.32 (1997) 239. 10.1016/S0025-5408(96)00175-4Search in Google Scholar

[9] D.Mondelaers, G.Vanhoyl, H.Van den Rul, J.D.Haen, M.K.VanBael, J.Mullens, L.C.Van Poucke: Mater. Res. Bull.37 (2002) 901. 10.1016/S0025-5408(02)00727-4Search in Google Scholar

[10] M.S.Tokumoto, S.H.Pulcinelli, C.V.Santilli, V.Briois: J. Phys. Chem. B107 (2003), 568. 10.1021/jp0217381Search in Google Scholar

[11] T.Tsuzuki, P.G.McCormick: Scripta Mater.44 (2001) 1731. 10.1016/S1359-6462(01)00793-XSearch in Google Scholar

[12] S.B.Park, Y.C.Kang: J. Aerosol Sci.28 (1997) (Suppl.) S473.Search in Google Scholar

[13] K.Okuyama, I.W.Lenggoro: Chem. Eng. Sci.58 (2003) 537. 10.1016/S0009-2509(02)00578-XSearch in Google Scholar

[14] F.Rataboul, C.Nayral, M.J.Casanove, A.Maisonnat, B.Chaudret: J. Organomet. Chem.643/644 (2002) 307. 10.1016/S0022-328X(01)01378-XSearch in Google Scholar

[15] T.Sato, T.Tanigaki, H.Suzuki, Y.Saito, O.Kido, Y.Kimura, C.Kaito, A.Takeda, S.Kaneko: J. Cryst. Growth255 (2003) 313. 10.1016/S0022-0248(03)01250-8Search in Google Scholar

[16] R.Viswanathan, G.D.Lilly, W.F.Gale, R.B.Gupta: Ind. Eng. Chem. Res.42 (2003) 5535. 10.1021/ie0302701Search in Google Scholar

[17] Y.W.Koh, M.Lin, C.K.Tan, Y.L.Foo, K.P.Loh: J. Phys. Chem. B108 (2004) 11419. 10.1021/jp049134fSearch in Google Scholar

[18] H.Zhang, D.Yang, Y.Ji, X.Y.Ma, J.Xu, D.L.Que: J. Phys. Chem. B108 (13) (2004) 3955. 10.1021/jp036826fSearch in Google Scholar

[19] B.Liu, H.C.Zeng: J. Am. Chem. Soc.125 (2003) 4430. PMid: 12683807; 10.1021/ja0299452Search in Google Scholar PubMed

[20] W.D.Yu, X.M.Li, X.D.Gao: Cryst. Growth. Des.5 (1) (2005) 151. 10.1021/cg049973rSearch in Google Scholar

[21] X.L.Hu, Y.J.Zhu, S.W.Wang: Mater. Chem. Phys.88 (2004) 421. 10.1016/j.matchemphys.2004.08.010Search in Google Scholar

[22] J.H.Kim, W.C.Choi, H.Y.Kim, Y.Kang, Y.K.Park: Powder Technol.153 (2005) 166. 10.1016/j.powtec.2005.03.004Search in Google Scholar

[23] J.M.Wang, L.Gao: Inorg. Chem. Commun.6 (2003) 877. 10.1016/S1387-7003(03)00134-5Search in Google Scholar

[24] A.Aimable, M.T.Buscaglia, V.Buscaglia, P.Bowen: J. Europ. Ceram. Soc.30 (2010) 591. 10.1016/j.jeurceramsoc.2009.06.010Search in Google Scholar

[25] X.D.Wang, Y.Dig, C.J.Sunmers, Z.L.Wang: J. Phys. Chem. B108 (2004) 8773. 10.1021/jp048482eSearch in Google Scholar

[26] X.Liu, Z.Jin, S.Bu, J.Zhao, K.Yu: Mat. Sci. Eng. B129 (2006) 139. 10.1016/j.mseb.2006.01.003Search in Google Scholar

[27] J.Liu, X.Huang: J. Solid State Chem.179 (2006) 843. 10.1016/j.jssc.2005.12.008Search in Google Scholar

[28] G.S.Wu, T.Xie, X.Y.Yuan, Y.Li, L.Yang, Y.H.Xiao, L.D.Zhang: Solid State Commun.134 (2005) 485. 10.1016/j.ssc.2005.02.015Search in Google Scholar

[29] L.F.Xu, Q.Liao, J.P.Zhan, X.H.Ai, D.S.Xu: J. Phys. Chem. C111 (2007) 4549. 10.1021/jp068485mSearch in Google Scholar

[30] J.Zhang, L.D.Sun, C.S.Liao, C.H.Yang: Chem. Commun.3 (2002) 262. PMid: 12120395; 10.1039/b108863gSearch in Google Scholar PubMed

[31] D.S.Boyle, K.Govender, P.O.Brien: Chem. Commun.80 (2002). PMid: 12120320; 10.1039/b110079nSearch in Google Scholar PubMed

[32] T.Zhang, Y.Zeng, H.T.Fan, L.J.Wang, R.Wang, W.Y.Fu, H.B.Yang: J. Phys. D: Appl. Phys, 42 (2009) 045103. 10.1088/0022-3727/42/4/045103Search in Google Scholar

[33] H.Zhang, D.R.Yang, Y.J.Ji, X.Y.Ma, J.Xu, D.L.Que: J. Phys. Chem. B108 (2004) 3955. 10.1021/jp036826fSearch in Google Scholar

[34] C.Pacholski, A.Komowski, H.Weller: Angew. Chem. Int. Edn.41 (2002) 1188.Search in Google Scholar

[35] C.Noguera: J. Phys.: Condens. Matter.12 (2000) R367. 10.1088/0953-8984/12/31/201Search in Google Scholar

[36] N.Jedrecy, S.Gallini, M.Sauvage-Simkin, R.Pinchaux: Surf. Sci., 460 (2000) 136. 10.1016/S0039-6028(00)00525-2Search in Google Scholar

[37] M.Saito, T.Wagner, G.Richter, M.Rühle: Phys. Rev. B80 (2009) 134110. 10.1103/PhysRevB.80.134110Search in Google Scholar

[38] J.Zhang, L.D.Sim, C.S.Liao, C.H.Yang: Chem. Commun.3 (2000) 262.Search in Google Scholar

[39] B.Meyer, D.Marx: Phys. Rev. B67 (2003) 35403. 10.1103/PhysRevB.67.035403Search in Google Scholar

[40] X.Y.Zhan, J.Y.Dai, H.C.Ong, N.Wang, H.L.Chan, C.L.Choy: Chem. Phys. Lett.393 (2004) 17. 10.1016/j.cplett.2004.06.012Search in Google Scholar

[41] H.Kleinwechter, C.Janzen, H.Knipping, H.Wiggers, P.Roth: J. Mater. Sci.37 (2002) 4349. 10.1023/A:1020656620050Search in Google Scholar

[42] Z.Yang, Q.H.Liu: Physica E40 (2008) 531. 10.1016/j.physe.2007.07.027Search in Google Scholar

Received: 2011-8-1
Accepted: 2012-8-15
Published Online: 2014-03-30
Published in Print: 2013-03-14

© 2013, Carl Hanser Verlag, München

Downloaded on 13.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110863/html
Scroll to top button