Startseite Electronic mobilities of fluorinated oligoacenes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Electronic mobilities of fluorinated oligoacenes

  • Xue-Hai Ju und Xin Liao
Veröffentlicht/Copyright: 18. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Quantum mechanics calculations were performed on fluorinated oligoacenes, with and without 2-thienyl attached. Reorganization energies between the switch of neutral molecules and anion radicals, and the electron-transfer coupling matrix were obtained. By using the Marcus theory and the Einstein relation, the electron hopping rates and mobilities were predicted for the title compounds. The mobility of 3b2 was predicted to be 3.03 cm2 V1s1, which is the largest value among the title compounds. This indicates that the 2-thienyl considerably facilitates electronic mobility for n-type organic semiconductors when attached to oligoacenes at an appropriate position.


Correspondence address, Professor Xue-Hai Ju, Key Laboratory of Soft Chemistry and Functional Materials of MOESchool of Chemical EngineeringNanjing University of Science and TechnologyNanjing 210094P.R. China, Tel.: +86 15195767576, Fax: +86 25 84431622, Email:

References

[1] A.R.Murphy, J.M.J.Fréchet: Chem. Rev.107 (2007) 1066. 17428023 10.1021/cr0501386Suche in Google Scholar

[2] L.Fomina, G.Z.Galán, M.Bizarro, J.G.Sánchez, I.P.Zaragoza, R.Salcedo: Mater. Chem. Phys.124 (2010) 257.10.1016/j.matchemphys.2010.06.028Suche in Google Scholar

[3] A.W.Hains, Z.Liang, M.A.Woodhouse, B.A.Gregg: Chem. Rev.110 (2010) 6689.20184362 10.1021/cr9002984Suche in Google Scholar

[4] L.Leontie, R.Danac, N.Apetroaei, G.I.Rusu: Mater. Chem. Phys.127 (2011) 471.10.1016/j.matchemphys.2011.02.040Suche in Google Scholar

[5] S.Taeger, M.Mertig: Int. J. Mat. Res.98 (2007) 742.Suche in Google Scholar

[6] Y.G.Wen, Y.Q.Liu: Adv. Mater.22 (2010) 1331. 20437478 10.1002/adma.200901454Suche in Google Scholar

[7] Z.Bao, J.A.Rogers, H.E.Katz: J. Mater. Chem.9 (1999) 1895.10.1039/a902652eSuche in Google Scholar

[8] C.D.Dimitrakopoulos, P.R.L.Malenfant: Adv. Mater.14 (2002) 99.10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9Suche in Google Scholar

[9] J.H.Burroughes, D.D.C.Bradley, A.R.Brown, R.N.Marks, K.Mackay, R.H.Friend, P.L.Burns, A.B.Holmes: Nature347 (1990) 539.10.1038/347539a0Suche in Google Scholar

[10] C.J.Brabec, N.S.Sariciftci, J.C.Hummelen: Adv. Funct. Mater.11 (2001) 15.10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-ASuche in Google Scholar

[11] H.E.Katz, Z.Bao: J. Phys. Chem.B104 (2000) 671.10.1021/jp992853nSuche in Google Scholar

[12] H.Usta, A.Facchetti, T.J.Marks: Acc. Chem. Res.44 (2011) 501. 21615105 10.1021/ar200006rSuche in Google Scholar PubMed

[13] A.Datta, S.Mohakud, S.K.Pati: J. Chem. Phys.126 (2007) 144710. 17444735 10.1063/1.2721530Suche in Google Scholar PubMed

[14] W.Q.Deng, W.A.Goddard Ш: J. Phys. Chem.B108 (2004) 8614.10.1021/jp0495848Suche in Google Scholar

[15] M.Winkler, K.N.Houk: J. Am. Chem. Soc.129 (2007) 1805. 17249669 10.1021/ja067087uSuche in Google Scholar PubMed

[16] S.E.Koh, B.Delley, J.E.Medvedeva, A.Facchetti, A.J.Freeman, T.J.Marks, M.A.Ratner: J. Phys. Chem.B110 (2006) 24361. 1713418810.1021/jp064840xSuche in Google Scholar PubMed

[17] J.J.P.Stewart: J. Comput. Chem.10 (1989) 209.10.1002/jcc.540100208Suche in Google Scholar

[18] S.Schröder, V.Daggett, P.Kollman: J. Am. Chem. Soc.113 (1991) 8922.10.1021/ja00023a046Suche in Google Scholar

[19] M.J.Frisch, G.W.Trucks, H.B.Schlegel, G.E.Scuseria, M.A.Robb, J.R.Cheeseman, J.A.Montgomery, Jr., T.Vreven, K.N.Kudin, J.C.Burant, J.M.Millam, S.S.Iyengar, J.Tomasi, V.Barone, B.Mennucci, M.Cossi, G.Scalmani, N.Rega, G.A.Petersson, H.Nakatsuji, M.Hada, M.Ehara, K.Toyota, R.Fukuda, J.Hasegawa, M.Ishida, T.Nakajima, Y.Honda, O.Kitao, H.Nakai, M.Klene, X.Li, J.E.Knox, H.P.Hratchian, J.B.Cross, C.Adamo, J.Jaramillo, R.Gomperts, R.E.Stratmann, O.Yazyev, A.J.Austin, R.Cammi, C.Pomelli, J.W.Ochterski, P.Y.Ayala, K.Morokuma, G.A.Voth, P.Salvador, J.J.Dannenberg, V.G.Zakrzewski, S.Dapprich, A.D.Daniels, M.C.Strain, O.Farkas, D.K.Malick, A.D.Rabuck, K.Raghavachari, J.B.Foresman, J.V.Ortiz, Q.Cui, A.G.Baboul, S.Clifford, J.Cioslowski, B.B.Stefanov, G.Liu, A.Liashenko, P.Piskorz, I.Komaromi, R.L.Martin, D.J.Fox, T.Keith, M.A.Al-Laham, C.Y.Peng, A.Nanayakkara, M.Challacombe, P.M.W.Gill, B.Johnson, W.Chen, M.W.Wong, C.Gonzalez, J.A.Pople: Gaussian 03, Revision B.03; Gaussian, Inc., Pittsburgh, PA (2003).Suche in Google Scholar

[20] Y.Shao, L.Fusti-Molnar, Y.Jung, J.Kussmann, C.Ochsenfeld, S.T.Brown, A.T.B.Gilbert, L.V.Slipchenko, S.V.Levchenko, D.P.O'Neill, R.A.DiStasioJr., R.C.Lochan, T.Wang, G.J.O.Beran, N.A.Besley, J.M.Herbert, C.Y.Lin, T.V.Voorhis, S.H.Chien, A.Sodt, R.P.Steele, V.A.Rassolov, P.E.Maslen, P.P.Korambath, R.D.Adamson, B.Austin, J.Baker, E.F.C.Byrd, H.Dachsel, R.J.Doerksen, A.Dreuw, B.D.Dunietz, A.D.Dutoi, T.R.Furlani, S.R.Gwaltney, A.Heyden, S.Hirata, C.-P.Hsu, G.Kedziora, R.Z.Khalliulin, P.Klunzinger, A.M.Lee, M.S.Lee, W.Liang, I.Lotan, N.Nair, B.Peters, E.I.Proynov, P.A.Pieniazek, Y.M.Rhee, J.Ritchie, E.Rosta, C.D.Sherrill, A.C.Simmonett, J.E.Subotnik, H.L.WoodcockIII, W.Zhang, A.T.Bell, A.K.Chakraborty, D.M.Chipman, F.J.Keil, A.Warshel, W.J.Hehre, H.F.SchaeferIII, J.Kong, A.I.Krylov, P.M.W.Gill, M.Head-Gordon: Q-Chem, Version 3.0, Q-Chem, Inc., Pittsburgh, PA (2006).Suche in Google Scholar

Received: 2011-9-29
Accepted: 2012-7-4
Published Online: 2013-05-18
Published in Print: 2013-01-01

© 2013, Carl Hanser Verlag, München

Heruntergeladen am 30.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110832/html?lang=de
Button zum nach oben scrollen