Electronic mobilities of fluorinated oligoacenes
-
Xue-Hai Ju
und Xin Liao
Abstract
Quantum mechanics calculations were performed on fluorinated oligoacenes, with and without 2-thienyl attached. Reorganization energies between the switch of neutral molecules and anion radicals, and the electron-transfer coupling matrix were obtained. By using the Marcus theory and the Einstein relation, the electron hopping rates and mobilities were predicted for the title compounds. The mobility of 3b2 was predicted to be 3.03 cm2 V–1s–1, which is the largest value among the title compounds. This indicates that the 2-thienyl considerably facilitates electronic mobility for n-type organic semiconductors when attached to oligoacenes at an appropriate position.
References
[1] A.R.Murphy, J.M.J.Fréchet: Chem. Rev.107 (2007) 1066. 17428023 10.1021/cr0501386Suche in Google Scholar
[2] L.Fomina, G.Z.Galán, M.Bizarro, J.G.Sánchez, I.P.Zaragoza, R.Salcedo: Mater. Chem. Phys.124 (2010) 257.10.1016/j.matchemphys.2010.06.028Suche in Google Scholar
[3] A.W.Hains, Z.Liang, M.A.Woodhouse, B.A.Gregg: Chem. Rev.110 (2010) 6689.20184362 10.1021/cr9002984Suche in Google Scholar
[4] L.Leontie, R.Danac, N.Apetroaei, G.I.Rusu: Mater. Chem. Phys.127 (2011) 471.10.1016/j.matchemphys.2011.02.040Suche in Google Scholar
[5] S.Taeger, M.Mertig: Int. J. Mat. Res.98 (2007) 742.Suche in Google Scholar
[6] Y.G.Wen, Y.Q.Liu: Adv. Mater.22 (2010) 1331. 20437478 10.1002/adma.200901454Suche in Google Scholar
[7] Z.Bao, J.A.Rogers, H.E.Katz: J. Mater. Chem.9 (1999) 1895.10.1039/a902652eSuche in Google Scholar
[8] C.D.Dimitrakopoulos, P.R.L.Malenfant: Adv. Mater.14 (2002) 99.10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9Suche in Google Scholar
[9] J.H.Burroughes, D.D.C.Bradley, A.R.Brown, R.N.Marks, K.Mackay, R.H.Friend, P.L.Burns, A.B.Holmes: Nature347 (1990) 539.10.1038/347539a0Suche in Google Scholar
[10] C.J.Brabec, N.S.Sariciftci, J.C.Hummelen: Adv. Funct. Mater.11 (2001) 15.10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-ASuche in Google Scholar
[11] H.E.Katz, Z.Bao: J. Phys. Chem.B104 (2000) 671.10.1021/jp992853nSuche in Google Scholar
[12] H.Usta, A.Facchetti, T.J.Marks: Acc. Chem. Res.44 (2011) 501. 21615105 10.1021/ar200006rSuche in Google Scholar PubMed
[13] A.Datta, S.Mohakud, S.K.Pati: J. Chem. Phys.126 (2007) 144710. 17444735 10.1063/1.2721530Suche in Google Scholar PubMed
[14] W.Q.Deng, W.A.Goddard Ш: J. Phys. Chem.B108 (2004) 8614.10.1021/jp0495848Suche in Google Scholar
[15] M.Winkler, K.N.Houk: J. Am. Chem. Soc.129 (2007) 1805. 17249669 10.1021/ja067087uSuche in Google Scholar PubMed
[16] S.E.Koh, B.Delley, J.E.Medvedeva, A.Facchetti, A.J.Freeman, T.J.Marks, M.A.Ratner: J. Phys. Chem.B110 (2006) 24361. 1713418810.1021/jp064840xSuche in Google Scholar PubMed
[17] J.J.P.Stewart: J. Comput. Chem.10 (1989) 209.10.1002/jcc.540100208Suche in Google Scholar
[18] S.Schröder, V.Daggett, P.Kollman: J. Am. Chem. Soc.113 (1991) 8922.10.1021/ja00023a046Suche in Google Scholar
[19] M.J.Frisch, G.W.Trucks, H.B.Schlegel, G.E.Scuseria, M.A.Robb, J.R.Cheeseman, J.A.Montgomery, Jr., T.Vreven, K.N.Kudin, J.C.Burant, J.M.Millam, S.S.Iyengar, J.Tomasi, V.Barone, B.Mennucci, M.Cossi, G.Scalmani, N.Rega, G.A.Petersson, H.Nakatsuji, M.Hada, M.Ehara, K.Toyota, R.Fukuda, J.Hasegawa, M.Ishida, T.Nakajima, Y.Honda, O.Kitao, H.Nakai, M.Klene, X.Li, J.E.Knox, H.P.Hratchian, J.B.Cross, C.Adamo, J.Jaramillo, R.Gomperts, R.E.Stratmann, O.Yazyev, A.J.Austin, R.Cammi, C.Pomelli, J.W.Ochterski, P.Y.Ayala, K.Morokuma, G.A.Voth, P.Salvador, J.J.Dannenberg, V.G.Zakrzewski, S.Dapprich, A.D.Daniels, M.C.Strain, O.Farkas, D.K.Malick, A.D.Rabuck, K.Raghavachari, J.B.Foresman, J.V.Ortiz, Q.Cui, A.G.Baboul, S.Clifford, J.Cioslowski, B.B.Stefanov, G.Liu, A.Liashenko, P.Piskorz, I.Komaromi, R.L.Martin, D.J.Fox, T.Keith, M.A.Al-Laham, C.Y.Peng, A.Nanayakkara, M.Challacombe, P.M.W.Gill, B.Johnson, W.Chen, M.W.Wong, C.Gonzalez, J.A.Pople: Gaussian 03, Revision B.03; Gaussian, Inc., Pittsburgh, PA (2003).Suche in Google Scholar
[20] Y.Shao, L.Fusti-Molnar, Y.Jung, J.Kussmann, C.Ochsenfeld, S.T.Brown, A.T.B.Gilbert, L.V.Slipchenko, S.V.Levchenko, D.P.O'Neill, R.A.DiStasioJr., R.C.Lochan, T.Wang, G.J.O.Beran, N.A.Besley, J.M.Herbert, C.Y.Lin, T.V.Voorhis, S.H.Chien, A.Sodt, R.P.Steele, V.A.Rassolov, P.E.Maslen, P.P.Korambath, R.D.Adamson, B.Austin, J.Baker, E.F.C.Byrd, H.Dachsel, R.J.Doerksen, A.Dreuw, B.D.Dunietz, A.D.Dutoi, T.R.Furlani, S.R.Gwaltney, A.Heyden, S.Hirata, C.-P.Hsu, G.Kedziora, R.Z.Khalliulin, P.Klunzinger, A.M.Lee, M.S.Lee, W.Liang, I.Lotan, N.Nair, B.Peters, E.I.Proynov, P.A.Pieniazek, Y.M.Rhee, J.Ritchie, E.Rosta, C.D.Sherrill, A.C.Simmonett, J.E.Subotnik, H.L.WoodcockIII, W.Zhang, A.T.Bell, A.K.Chakraborty, D.M.Chipman, F.J.Keil, A.Warshel, W.J.Hehre, H.F.SchaeferIII, J.Kong, A.I.Krylov, P.M.W.Gill, M.Head-Gordon: Q-Chem, Version 3.0, Q-Chem, Inc., Pittsburgh, PA (2006).Suche in Google Scholar
© 2013, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Microstructure and high temperature deformation of an ultra-fine grained ECAP AA7075 aluminium alloy
- Stability of mechanical behavior and work performance in TiNi-based alloys during thermal cycling
- The effect of welding process and shielding atmosphere on the AlMg4.5Mn weld metal properties
- Comparative thermodynamic analysis and phase diagram prediction of the Ga – Sn – Zn system
- 450°C isothermal section of the Zn-Fe-Co-Si quaternary system at the zinc-rich corner
- Mixing enthalpies in binary Ce-Sb and ternary Ce-Co-Sb liquid alloys
- Thermodynamic re-assessment of the Ni – Sn system
- Study of macro- and micro-segregation of iridium in molybdenum single crystals after electron beam zone melting
- Microstructure, mechanical and oxidation properties of in-situ synthesized (Y2O3 + TiC)/Ti-4.5Si composites
- Hydrothermal synthesis of MoO3 micro-belts
- Room temperature synthesis of microemulsion mediated rutile TiO2 nanoparticles showing remarkable photocatalytic activity
- Effect of montmorillonite clay content on ac conductivity and impedance of Epoxy-based nanocomposites
- Effect of sintering behavior on the porous structure of porous quartz ceramics
- Structural, elastic, thermodynamic and lattice dynamic properties of PrX (X = Sb, Bi)
- Electronic mobilities of fluorinated oligoacenes
- DGM News
- Fachausschüsse
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Microstructure and high temperature deformation of an ultra-fine grained ECAP AA7075 aluminium alloy
- Stability of mechanical behavior and work performance in TiNi-based alloys during thermal cycling
- The effect of welding process and shielding atmosphere on the AlMg4.5Mn weld metal properties
- Comparative thermodynamic analysis and phase diagram prediction of the Ga – Sn – Zn system
- 450°C isothermal section of the Zn-Fe-Co-Si quaternary system at the zinc-rich corner
- Mixing enthalpies in binary Ce-Sb and ternary Ce-Co-Sb liquid alloys
- Thermodynamic re-assessment of the Ni – Sn system
- Study of macro- and micro-segregation of iridium in molybdenum single crystals after electron beam zone melting
- Microstructure, mechanical and oxidation properties of in-situ synthesized (Y2O3 + TiC)/Ti-4.5Si composites
- Hydrothermal synthesis of MoO3 micro-belts
- Room temperature synthesis of microemulsion mediated rutile TiO2 nanoparticles showing remarkable photocatalytic activity
- Effect of montmorillonite clay content on ac conductivity and impedance of Epoxy-based nanocomposites
- Effect of sintering behavior on the porous structure of porous quartz ceramics
- Structural, elastic, thermodynamic and lattice dynamic properties of PrX (X = Sb, Bi)
- Electronic mobilities of fluorinated oligoacenes
- DGM News
- Fachausschüsse