Influence of mineralized collagen fibrils on the thermo-sensitivity of an injectable scaffold for bone regeneration
-
Zhi Huang
, Xiaoming Li , Qingling Feng , Ziqin Rong and Bo Yu
Abstract
Mineralized collagen fibrils are the basis for various connective tissues such as bone and cartilage. Injectable biomaterials incorporating mineralized collagen fibrils are applicable to a wide variety of implant types for bone regeneration. A mineralized collagen fibrils/chitosan thermo-sensitive and injectable scaffold for bone regeneration was prepared successfully. The thermo-sensitive properties of the mineralized collagen fibrils/chitosan system depended on the concentrations of mineralized collagen fibrils. 0.02 g mL−1 of mineralized collagen fibrils filler was appropriate for application since it allowed lower gelation temperature and more rapid gelation following injection, due to the increased hydrogen bonds between the collagen in mineralized collagen fibrils and chitosan.
References
[1] M.M.Stevens, J.H.George: Science310 (2005) 1135. 10.1126/science.1106587Search in Google Scholar
[2] M.Miranda, A.Fernandez, E.Saiz, A.P.Tomsia, R.Torrecillas: Int. J. Mat. Res.101 (2010) 117.10.3139/146.110247Search in Google Scholar
[3] F.Z.Cui, Y.Li, J.Ge: Mat. Sci. Eng., R57 (2007) 1. 10.1016/j.mser.2007.04.001Search in Google Scholar
[4] M.Gelinsky, M.Eckert, F.Despang: Int. J. Mat. Res.98 (2007) 749.Search in Google Scholar
[5] W.Zhang, S.S.Liao, F.Z.Cui: Chem Mater.15 (2003) 3221. 10.1021/cm030080gSearch in Google Scholar
[6] J.D.Kretlow, S.Young, L.Klouda, M.Wong, A.G.Mikos: Advanced Materials21 (2009) 3368. 10.1002/adma.200802009Search in Google Scholar
[7] L.Klouda, A.G.Mikos: Eur. J. Pharm. Biopharm.68 (2008) 34. 10.1016/j.ejpb.2007.02.025Search in Google Scholar
[8] K.E.Crompton, D.Tomas, D.I.Finkelstein, M.Marr, J.S.Forsythe, M.K.Horne: J. Mater. Sci.-Mater. M17 (2006) 633. 10.1007/s10856-006-9226-6Search in Google Scholar
[9] A.Chenite, C.Chaput, D.Wang, C.Combes, M.D.Buschmann, C.D.Hoemann, J.C.Leroux, B.L.Atkinson, F.Binette, A.Selmani: Biomaterials21 (2000) 2155. 10.1016/S0142-9612(00)00116-2Search in Google Scholar
[10] B.Nies, S.Rossler, A.Reinstorf: Int. J. Mat. Res.98 (2007) 630.10.3139/146.101510Search in Google Scholar
[11] Z.Huang, J.Tian, B.Yu, Y.Xu, Q.Feng: Biomed. Mater.4 (2009) 55005. 10.1088/1748-6041/4/5/055005Search in Google Scholar PubMed
[12] T.J.Webster, R.W.Siegel, R.Bizios: Biomaterials20 (1999) 1221. 10.1016/S0142-9612(99)00020-4Search in Google Scholar
[13] J.Y.Cho, M.C.Heuzey, A.Begin, P.J.Carreau: Biomacromolecules6 (2005) 3267. 10.1021/bm050313sSearch in Google Scholar PubMed
[14] J.Cho, M.C.Heuzey, A.Begin, P.J.Carreau: Carbohyd. Polym.63 (2006) 507. 10.1016/j.carbpol.2005.10.013Search in Google Scholar
[15] S.V.Dorozhkin: J. Colloid Interface Sci.191 (1997) 489. 10.1006/jcis.1997.4942Search in Google Scholar PubMed
[16] S.V.Dorozhkin: Comments on Inorganic Chemistry20 (1999) 285. 10.1080/02603599908021447Search in Google Scholar
[17] S.Bertazzo, W.F.Zambuzzi, D.D.P.Campos, T.L.Ogeda, C.V.Ferreira, C.A.Bertran: Colloids and Surfaces B-Biointerfaces78 (2010) 177. 10.1016/j.colsurfb.2010.02.027Search in Google Scholar PubMed
[18] J.Cho, M.C.Heuzey, M.Hamdine: Macromol. Mater. Eng.292 (2007) 571. 10.1002/mame.200700009Search in Google Scholar
[19] C.Carotenuto, N.Grizzuti: Rheologica Acta45 (2006) 468. 10.1007/s00397-005-0075-xSearch in Google Scholar
[20] H.B.Pan, B.W.Darvell: Crystal Growth & Design9 (2009) 639. 10.1021/cg801118vSearch in Google Scholar
[21] S.S.Liao, F.Z.Cui, W.Zhang, Q.L.Feng: J. Biomed. Mater. Res. B69 (2004) 158. 10.1002/jbm.b.20035Search in Google Scholar PubMed
[22] B.O.Fowler: Inorg. Chem.13 (1974) 194. 10.1021/ic50131a039Search in Google Scholar
[23] M.Jackson, L.P.Choo, P.H.Watson, W.C.Halliday, H.H.Mantsch: Bba-Mol. Basis Dis.1270 (1995) 1.10.1016/0925-4439(94)00056-VSearch in Google Scholar
[24] V.Renugopalakrishnan, G.Chandrakasan, S.Moore, T.B.Hutson, C.V.Berney, R.S.Bhatnagar: Macromolecules22 (1989) 4121. 10.1021/ma00200a054Search in Google Scholar
[25] A.Sionkowka, M.Wisniewski, J.Skopinska, C.J.Kennedy, T.J.Wess: Biomaterials25 (2004) 795. 10.1016/S0142-9612(03)00595-7Search in Google Scholar
[26] Z.G.Chen, X.M.Mo, C.L.He, H.S.Wang: Carbohyd. Polym.72 (2008) 410. 10.1016/j.carbpol.2007.09.018Search in Google Scholar
[27] A.Chenite, S.Gori, M.Shive, E.Desrosiers, M.D.Buschmann: Carbohyd. Polym.64 (2006) 419. 10.1016/j.carbpol.2005.12.010Search in Google Scholar
[28] M.Lavertu, D.Filion, M.D.Buschmann: Biomacromolecules9 (2008) 640. 10.1021/bm700745dSearch in Google Scholar PubMed
© 2011, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Changes in the Editorial Office of IJMR
- Original Contributions
- Influence of the nature of an electric field applied during the solution heat treatment of the Al-Mg-Si-Cu Alloy AA6111 on subsequent natural aging
- Isothermal dynamic thermal diffusivity studies of the reduction of NiO and NiWO4 precursors by hydrogen
- Heating rate effects on reverse martensitic transformation in a Cu – Zn – Al shape memory alloy
- Effect of Ce content on the microstructure of semisolid Mg-10Al alloy
- Dielectric properties of low-temperature sintered Ba(Fe0.5Nb0.5)O3 with BaCu(B2O5) addition
- Recovery stress and shape memory stability in Ni–Ti–Cu thin wires at high temperatures
- Microstructure and mechanical properties of WC-Ni-Al based cemented carbides developed for engineering applications
- Microstructure of austenitic stainless steels of various phase stabilities after cyclic and tensile deformation
- High temperature workability behaviour of a modified P92 steel
- Influence of mineralized collagen fibrils on the thermo-sensitivity of an injectable scaffold for bone regeneration
- Low temperature synthesis of CuGeO3 nanoflowers from n-heptane solvent
- Preparation of Zn1–xMnxO nanoparticles by a simple “green” method and photocatalytic activity under visible light irradiation
- Surface morphology, electrical and optical properties n-type doped MOCVD grown GaSb using dimethyltellurium
- The role of polymethylhydrosiloxane in the sol-gel synthesis of high surface area porous silicon carbide
- Synthesis, characterization and dehydration–rehydration study of sol-gel derived hydroxide hydrogel of the MgO–ZrO2 system
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Changes in the Editorial Office of IJMR
- Original Contributions
- Influence of the nature of an electric field applied during the solution heat treatment of the Al-Mg-Si-Cu Alloy AA6111 on subsequent natural aging
- Isothermal dynamic thermal diffusivity studies of the reduction of NiO and NiWO4 precursors by hydrogen
- Heating rate effects on reverse martensitic transformation in a Cu – Zn – Al shape memory alloy
- Effect of Ce content on the microstructure of semisolid Mg-10Al alloy
- Dielectric properties of low-temperature sintered Ba(Fe0.5Nb0.5)O3 with BaCu(B2O5) addition
- Recovery stress and shape memory stability in Ni–Ti–Cu thin wires at high temperatures
- Microstructure and mechanical properties of WC-Ni-Al based cemented carbides developed for engineering applications
- Microstructure of austenitic stainless steels of various phase stabilities after cyclic and tensile deformation
- High temperature workability behaviour of a modified P92 steel
- Influence of mineralized collagen fibrils on the thermo-sensitivity of an injectable scaffold for bone regeneration
- Low temperature synthesis of CuGeO3 nanoflowers from n-heptane solvent
- Preparation of Zn1–xMnxO nanoparticles by a simple “green” method and photocatalytic activity under visible light irradiation
- Surface morphology, electrical and optical properties n-type doped MOCVD grown GaSb using dimethyltellurium
- The role of polymethylhydrosiloxane in the sol-gel synthesis of high surface area porous silicon carbide
- Synthesis, characterization and dehydration–rehydration study of sol-gel derived hydroxide hydrogel of the MgO–ZrO2 system
- DGM News
- DGM News