Accumulation of radiation damage and disordering in MgAl2O4 under swift heavy ion irradiation
-
Kazuhiro Yasuda
, Tomokazu Yamamoto , Motoki Etoh , Shinji Kawasoe , Syo Matsumura and Norito Ishikawa
Abstract
Accumulation and recovery of radiation-induced damage with swift heavy ions in stoichiometric magnesium aluminate spinel, MgAl2O4, has been investigated. Microstructural change and atomic disordering was examined through transmission electron microscopy (TEM) techniques, with bright-field (BF) and high-resolution (HR) TEM images, and high angular resolution electron channelling X-ray spectroscopy (HARECXS), for single crystal MgAl2O4 irradiated with 200 MeV Xe, and 340 or 350 MeV Au ions. The density of core damage region, detected by BFTEM with Fresnel-contrast, increased proportionally with ion fluence at the early stage of accumulation and saturated at a fluence higher than 1016 ions m2. This result is discussed with a balance between the formation and recovery of the core damage region under irradiation, and the influence region to induce the recovery was evaluated to be 7 – 9 nm in radius. HARECXS and electron diffraction analysis revealed that cations at tetrahedral sites preferentially occupy octahedral sites to transform to defective rock-salt structure. The structure of the core damage region is found from HR and BFTEM images to be a columnar vacancy-rich region with a low atomic density.
References
[1] F.W.Clinard, Jr., G.F.Hurley, L.W.Hobbs: J. Nucl. Mater. 108–109 (1982) 655.Search in Google Scholar
[2] C.Kinoshita, K.Fukumoto, K.Fukuda, F.A.Garner, G.W.Hollenberg: J. Nucl. Mater. 219 (1995) 143. DOI: 10.1016/0022-3115(94)00388-2Search in Google Scholar
[3] K.E.Sickafus, A.C.Larson, N.Yu, M.Nastasi, GW.Hollenberg, F.A.Garner, R.C.Bradt: J. Nucl. Mater. 219 (1995) 128. DOI: 10.1016/0022-3115(94)00386-6Search in Google Scholar
[4] K.Yasuda, C.Kinoshita, R.Morisaki, H.Abe: Philos. Mag. A78 (1998) 583. DOI: 10.1080/01418619808241924Search in Google Scholar
[5] E.A.C.Neeft, R.J.M.Konings, K.Bakker, J.G.Boshoven, H.Hein, R.P.C.Schrm, A.van Veen, R.Conrad: J. Nucl. Mater. 274 (1999)78.10.1016/S0022-3115(99)00079-3Search in Google Scholar
[6] H.Akie, T.Muromura, H.Takano, S.Matsuura: Nucl. Technol. 107 (1994) 182.10.13182/NT107-182Search in Google Scholar
[7] T.Yamashita, K.Kuramoto, H.Akie, Y.Nakao, N.Nitani, T.Nakamura, K.Kasugaya, T.Ohmichi: J. Nucl. Sei. Technol. 39 (2002) 865. DOI: 10.3327/jnst.39.865Search in Google Scholar
[8] SJ.Zinkle, V.A.Skuratov: Nucl. Instrum. Methods B141 (1998) 737. DOI: 10.1016/S0168-583X(98)00078-0Search in Google Scholar
[9] K.Yasuda, T.Yamamoto, S.Seki, K.Shiiyama, S.Matsumura: Nucl. Instrum. Methods B266 (2008) 2834. DOI: 10.1016/j.nimb.2008.03.127Search in Google Scholar
[10] SJ.Zinkle, Hj.Matzke, V.A.Skuratov: Mat. Res. Soc. Symp. Proc:540 (1997) 299.Search in Google Scholar
[11] M.Shimada, S.Matsumura, K.Yasuda, C.Kinoshita, Y.Chimi, N.Ishikawa, A.Iwase: J. Nucl. Mater. 329-333 (2004) 1446. DOI: 10.1016/j.jnucmat.2004.04.161Search in Google Scholar
[12] T.Yamamoto, M.Shimada, K.Yasuda, S.Matsumura, Y.Chimi, N.Ishikawa: Nucl. Instrum. Methods B245 (2006) 235. DOI: 10.1016/j.nimb.2005.11.108Search in Google Scholar
[13] K.Yasuda, T.Yamamoto, M.Shimada, S.Matsumura, Y.Chimi, N.Ishikawa: Nucl. Instrum. Methods B250 (2006) 238. DOI: 10.1016/j.nimb.2006.04.164Search in Google Scholar
[14] K.Yasuda, T.Yamamoto, S.Matsumura: JOM59 (2007) 27. DOI: 10.1007/sll837-007-0050-3Search in Google Scholar
[15] J.F.Ziegler, J.P.Biersack, U.Littmark: The Stopping and Range of Ions Solids, Pergamon, New York (1985).Search in Google Scholar
[16] M.P.Oxley, L.J.Allen: J. Appl. Cryst. 36 (2003) 940. DOI: 10.1107/S0021889803002875Search in Google Scholar
[17] S.Matsumura, T.Soeda, N.J.Zaluzec, C.Kinoshita: Mat. Res. Soc. Symp. Proc. 589 (2001) 129.10.1557/PROC-589-129Search in Google Scholar
[18] K.E.Sickafus, J.M.Wills: J. Am. Ceram. Soc. 82 (1999) 3297.Search in Google Scholar
[19] T.Yamamoto, A.Chartier, K.Yasuda, C.Meis, K.Shiiyama, S.Matsumura: Nucl. Instrum. Methods B266 (2008) 2676. DOI: 10.1016/j.nimb.2008.03.231Search in Google Scholar
[20] R.Smith, D.Bacorisen, B.P.Uberuaga, K.E.Sickafus, J.A.Ball, R.W.Grimes: J. Phys. Condens. Matter. 17 (2005) 875.10.1088/0953-8984/17/6/008Search in Google Scholar
[21] N.Yu, K.E.Sickafus, M.Nastasi: Phil. Mag. Lett. 70 (1994) 235. DOI: 10.1080/09500839408240980Search in Google Scholar
[22] Y.Ishimaru, I.Hirotsu, V.Afanasyev-Charkin, K.E.Sickafus: J. Phys. Condens. Matter. 14 (2002) 1237. DOI: 10.1088/0953-8984/14/6/311Search in Google Scholar
© 2011, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Prof. Dr.-Ing. Heinrich Wollenberger — 80 years
- Original Contributions
- Atom probe tomography: from physical metallurgy towards microelectronics
- Accumulation of radiation damage and disordering in MgAl2O4 under swift heavy ion irradiation
- TEM study of irradiation induced copper precipitation in boron alloyed EUROFER97 steel
- Order – disorder transformation in Ni – V alloys under electron irradiation
- Materials issues of the SINQ high-power spallation target
- The origin and development of the P{011}<111> orientation during recrystallization of particle-containing alloys
- Coarsening kinetics of Cu-rich precipitates in a concentrated multicomponent Fe–Cu based steel
- Beyond Ni-based superalloys: Development of CoRe-based alloys for gas turbine applications at very high temperatures
- The effect of heat treatments on the microstructure, texture and mechanical properties of the extruded magnesium alloy ME21
- Analysing SANS data to determine magnetisation reversal processes in composite perpendicular magnetic recording media using TEM images
- Dislocationless sliding in a polycluster glass
- Evolution of transformation plasticity during bainitic transformation
- Surface tension and viscosity of NiAl catalytic precursor alloys from microgravity experiments
- Synthesis of carbon nanotubes by fine Ni particles in Ni3Al foam
- Fabrication of dielectric thin films by sputtering deposition at different pressures with (Ba0.3Sr0.7)(Zn1/3Nb2/3)O3 ceramic as target
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Prof. Dr.-Ing. Heinrich Wollenberger — 80 years
- Original Contributions
- Atom probe tomography: from physical metallurgy towards microelectronics
- Accumulation of radiation damage and disordering in MgAl2O4 under swift heavy ion irradiation
- TEM study of irradiation induced copper precipitation in boron alloyed EUROFER97 steel
- Order – disorder transformation in Ni – V alloys under electron irradiation
- Materials issues of the SINQ high-power spallation target
- The origin and development of the P{011}<111> orientation during recrystallization of particle-containing alloys
- Coarsening kinetics of Cu-rich precipitates in a concentrated multicomponent Fe–Cu based steel
- Beyond Ni-based superalloys: Development of CoRe-based alloys for gas turbine applications at very high temperatures
- The effect of heat treatments on the microstructure, texture and mechanical properties of the extruded magnesium alloy ME21
- Analysing SANS data to determine magnetisation reversal processes in composite perpendicular magnetic recording media using TEM images
- Dislocationless sliding in a polycluster glass
- Evolution of transformation plasticity during bainitic transformation
- Surface tension and viscosity of NiAl catalytic precursor alloys from microgravity experiments
- Synthesis of carbon nanotubes by fine Ni particles in Ni3Al foam
- Fabrication of dielectric thin films by sputtering deposition at different pressures with (Ba0.3Sr0.7)(Zn1/3Nb2/3)O3 ceramic as target
- DGM News
- DGM News