Startseite Martensitic phase transformations of nanocrystalline NiTi shape memory alloys processed by repeated cold rolling
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Martensitic phase transformations of nanocrystalline NiTi shape memory alloys processed by repeated cold rolling

  • M. Peterlechner , T. Waitz , C. Gammer und T. Antretter
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The impact of grain size on the martensitic phase transformations of bulk nanocrystalline NiTi shape memory alloys processed by repeated cold rolling was systematically studied by differential scanning calorimetry and transmission electron microscopy. With decreasing grain size, the formation of the martensite is strongly suppressed and its thermal stability decreases. The effect of grain size on the intermediate R-phase is much smaller than that observed in the case of the martensite. Reversible and irreversible contributions to the Gibbs free energy of the martensite were obtained that are larger than those arising from the formation of martensite in coarse grains. Considering the dependence of the energy barrier on the transformation eigenstrain and the grain size, the experimental results were modelled within the general thermodynamic framework of the martensitic phase transformation.


* Correspondence address, Ao. Univ-Prof. Dr. Thomas Waitz Boltzmanngasse 5, 1090 Vienna, Austria Tel.: +43 1 427751312 Fax: +43 1 4277 51316 E-mail:

Dedicated to Prof. F. D. Fischer on the occasion of his 70th birthday


References

[1] K.Otsuka, C.M.Wayman: Shape Memory Materials, Cambridge Univ. Press, Cambridge (1998).Suche in Google Scholar

[2] H.C.Tong, C.M.Wayman: Acta Metall.22 (1974) 887.10.1016/0001-6160(74)90055-8Suche in Google Scholar

[3] G.B.Olson, M.Cohen: Scripta Metall.9 (1975) 1247.10.1016/0036-9748(75)90418-4Suche in Google Scholar

[4] R.J.Salzbrenner, M.Cohen: Acta Metall.27 (1979) 739.10.1016/0001-6160(79)90107-XSuche in Google Scholar

[5] J.Ortin, A.Planes: Acta Metall.36 (1988) 1873.10.1016/0001-6160(88)90291-XSuche in Google Scholar

[6] P.Wollants, J.R.Roos, L.Delaey: Progress Mater. Sci.37 (1993) 227.10.1016/0079-6425(93)90005-6Suche in Google Scholar

[7] J.M.Ball, R.D.James: Arch. Ration. Mech. Anal.100 (1987) 13.10.1007/BF00281246Suche in Google Scholar

[8] T.Waitz, K.Tsuchiya, T.Antretter, F.D.Fischer: MRS Bulletin34 (2009) 814.10.1557/mrs2009.231Suche in Google Scholar

[9] G.Reisner, B.Tiefenthaler, E.Werner, F.D.Fischer: Mater. Sci. Eng.A215 (1996) 50.10.1016/0921-5093(96)10265-3Suche in Google Scholar

[10] W.Y.Yan, G.Reisner, F.D.Fischer: Acta Mater.45 (1997) 1969.10.1016/S1359-6454(96)00320-5Suche in Google Scholar

[11] G.Reisner, E.A.Werner, F.D.Fischer: Int. J. Sol. Struct.35 (1998) 2457.Suche in Google Scholar

[12] T.Waitz, T.Antretter, F.D.Fischer, N.K.Simha, H.P.Karnthaler: J. Mech. Phys. Sol.55 (2007) 419.10.1016/j.jmps.2006.06.006Suche in Google Scholar

[13] T.Waitz, W.Pranger, T.Antretter, F.D.Fischer, H.P.Karnthaler: Mater. Sci. Eng. A481 (2008) 479.10.1016/j.msea.2007.03.122Suche in Google Scholar

[14] T.Waitz, V.Kazykhanov, H.P.Karnthaler: Acta Mater.52 (2004) 137.10.1016/j.actamat.2003.08.036Suche in Google Scholar

[15] T.Waitz, T.Antretter, F.D.Fischer, H.P.Karnthaler: Mater. Sci. Tech.24 (2008) 934.10.1179/174328408X302620Suche in Google Scholar

[16] Q.S.Mei, L.Zhang, K.Tsuchiya, H.Gao, T.Ohmura, K.Tsuzaki: Scripta Mater.63 (2010) 977.10.1016/j.scriptamat.2010.07.018Suche in Google Scholar

[17] B.Kockar, I.Karaman, J.I.Kim, Y.I.Chumlyakov, J.Sharp, C.J.Yu: Acta Mater.56, (2008) 3630.10.1016/j.actamat.2008.04.001Suche in Google Scholar

[18] K.Tsuchiya, Y.Hada, T.Koyano, K.Nakajima, M.Ohnuma, T.Koike, Y.Todaka, M.Umemoto: Scripta Mater.60, (2009) 749.10.1016/j.scriptamat.2008.12.058Suche in Google Scholar

[19] R.Delville, B.Mallard. J.Pilch, P.Sittner, D.Schryvers: Acta Mater.58 (2010) 4503.10.1016/j.actamat.2010.04.046Suche in Google Scholar

[20] V.Demers, V.Brailovski, S.D.Prokoshkin, K.E.Inaekyan: Mater. Sci. Eng. A513 (2009) 185.10.1016/j.msea.2009.01.055Suche in Google Scholar

[21] V.G.Pushin, A.I.Lotkov, Y.R.Kolobov, R.Z.Valiev, E.F.Dudarev, N.N.Kuranova, A.P.Dyupin, D.V.Gunderov, G.P.Bakach: Phys. Met. Metall.106 (2008) 120.Suche in Google Scholar

[22] A.V.Sergueeva, C.Song, R.Z.Valiev, A.K.Mukherjee: Mater. Sci. Eng. A339 (2003) 159.10.1016/S0921-5093(02)00122-3Suche in Google Scholar

[23] H.P.Karnthaler, T.Waitz, C.Rentenberger, B.Mingler: Mater. Sci. Eng. A387 (2004) 777.10.1016/j.msea.2004.01.125Suche in Google Scholar

[24] M.Peterlechner, T.Waitz, H.P.Karnthaler: Scripta Mater.59 (2008) 566.10.1016/j.scriptamat.2008.05.004Suche in Google Scholar

[25] K.Inaekyan, V.Brailovski, S.Prokoshkin, A.Korotitskiy, A.Glezer: J Alloys Comp.473 (2009) 71.10.1016/j.jallcom.2008.05.023Suche in Google Scholar

[26] M.Peterlechner, J.Bokeloh, G.Wilde, T.Waitz: Acta Mater.58 (2010) 6637.10.1016/j.actamat.2010.08.026Suche in Google Scholar

[27] Y.Liu, P.G.McGormick: Mater. Trans. JIM37 (1996) 691.Suche in Google Scholar

[28] Y.Liu, J.I.Kim, S.Miyazaki: Phil. Mag.84 (2004) 2083.10.1080/14786430410001678262Suche in Google Scholar

[29] J.K.Allafi, X.Ren, G.Eggeler: Acta Mater.50 (2002) 793.10.1016/S1359-6454(01)00385-8Suche in Google Scholar

[30] P.Stadelmann: Ultramicroscopy21 (1987) 131.10.1016/0304-3991(87)90080-5Suche in Google Scholar

[31] Z.Zhang, R.D.James, S.Müller: Acta Mater.57 (2009) 4332.10.1016/j.actamat.2009.05.034Suche in Google Scholar

[32] R.Delville, S.Kasinathan, Z.Zhang, J.Van Humbeeck, R.D.James, D.Schryvers: Phil. Mag.90 (2010) 177.10.1080/14786430903074755Suche in Google Scholar

[33] F.D.Fischer, G.Reisner: Acta Mater.46 (1998) 2095.10.1016/S1359-6454(97)00374-1Suche in Google Scholar

[34] K.Otsuka, X.Ren: Progr. Mater. Sci.50 (2005) 511.10.1016/j.pmatsci.2004.10.001Suche in Google Scholar

[35] Y.Liu, P.G.McGormick: Acta Metal. Mater.42 (1994) 2401.10.1016/0956-7151(94)90318-2Suche in Google Scholar

[36] Y.M.Jin, G.Y.Weng: Acta Mater.50 (2002) 2967.10.1016/S1359-6454(02)00123-4Suche in Google Scholar

[37] M.F.-X.Wagner, W.Windl: Acta Mater.56 (2008) 6323.10.1016/j.actamat.2008.08.043Suche in Google Scholar

[38] M.Kim, G.Cho, J.Noh, Y.Jeon, Y.Kim, S.Miyazakia, T.Nam: Scripta Mater.63 (2010) 1001.10.1016/j.scriptamat.2010.07.033Suche in Google Scholar

[39] K.Tsuchiya, M.Ohnuma, K.Nakajima, T.Koike, Y.Hada, Y.Todaka, M.Umemoto, in: J.Sun, L.-P.Wang, Y.Furuya, S.Trolier-McKinstry, J.Leng (Eds.), Materials and Devices for Smart Systems III, MRS Symp. Proc.1129, Warrendale, PA (2009) 113.Suche in Google Scholar

Received: 2010-11-12
Accepted: 2011-4-6
Published Online: 2013-06-11
Published in Print: 2011-06-01

© 2011, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Original Contributions
  2. Microstructure and adhesion of as-deposited and annealed Cu/Ti films on polyimide
  3. On the origin of inhomogeneous stress and strain distributions in single-crystalline metallic nanoparticles
  4. Contents
  5. Contents
  6. Editorial
  7. Editorial June 2011
  8. IJMR's most downloaded papers
  9. Original Contributions
  10. An excursion into the design space of biomimetic architectured biphasic actuators
  11. Strategies for fracture toughness, strength and reliability optimisation of ceramic-ceramic laminates
  12. Fracture statistics of brittle materials at micro- and nano-scales
  13. Martensitic phase transformations of nanocrystalline NiTi shape memory alloys processed by repeated cold rolling
  14. Variational modeling of shape memory alloys – an overview
  15. Phase-field approach to martensitic phase transformations: Effect of martensite–martensite interface energy
  16. Modelling of diffusive and massive phase transformations in binary systems – thick interface parametric model
  17. On the strength of grain and phase boundaries in ferritic-martensitic dual-phase steels
  18. A micro-level strain analysis of a high-strength dual-phase steel
  19. Thermodynamic description of niobium-rich γ-TiAl alloys
  20. Phase transition and ordering behavior of ternary Ti–Al–Mo alloys using in-situ neutron diffraction
  21. Microstructure evolution and mechanical properties of an intermetallic Ti-43.5Al-4Nb-1Mo-0.1B alloy after ageing below the eutectoid temperature
  22. Investigation of Cu precipitation in bcc-Fe – Comparison of numerical analysis with experiment
  23. Modeling interfacial effects on the thermal conduction behavior of short fiber reinforced composites
  24. Electronic origin of structure and mechanical properties in Y and Nb alloyed Ti–Al–N thin films
  25. DGM News
  26. DGM News
Heruntergeladen am 26.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110525/html?lang=de
Button zum nach oben scrollen