Phase reaction of ceria in LPS–SiC with Al2O3–Y2O3 and AlN–Y2O3 additives
-
Z. Pan
, O. Fabrichnaya , G. Schreiber , H. J. Seifert , R. H. Baney und J. S. Tulenko
Abstract
Dense SiC with addition of CeO2 was obtained by liquid phase sintering using different additives (Y2O3, Al2O3) and (Y2O3, AlN). The total amounts of additives (Al2O3 + Y2O3) and (AlN + Y2O3) were fixed at 10 mass.% and 10 vol.%, respectively. Two different molar ratios of Al2O3:Y2O3 additives, 1:1 and 5:3, were selected for investigation. Ratios of AlN:Y2O3 were selected as 3:2 and 4:1. Influences of both different ratios of Al2O3:Y2O3 and AlN:Y2O3 and amounts of CeO2 on sintering behaviour were investigated. The phase reaction products were identified by X-ray diffraction and microstructures were investigated using scanning electron microscopy with energy dispersive X-ray spectroscopy techniques. In the samples using Al2O3 + Y2O3 as sintering additives, the CeO2 was dissolved in Y4Al2O9 phase during sintering. The oxidation state of Ce4+ changed to Ce3+ and Ce3+ occupies Y3+ positions, causing increases in lattice parameters for Y4Al2O9 with CeO2 content. In samples with AlN + Y2O3 as sintering additives, Y10Al2Si3O18 and Y2Si3N4O3 were formed in the CeO2-free and CeO2 containing compositions. During sintering, the CeO2 dissolves in oxynitrides via a similar mechanism as in the Y4Al2O9 phase.
References
[1] (Viability of inert matrix fuel in reducing plutonium amounts in reactors), IAEA, Viena 2006.Suche in Google Scholar
[2] G.Magnani, L.Beaulardi, L.Pilotti: J. Eur. Ceram. Soc.25 (2005) 1619. 10.1016/j.jeurceramsoc.2004.05.014Suche in Google Scholar
[3] E.Gomez, J.Echeberria, I.Iturriza, F.Castro: J. Eur. Ceram. Soc.24 (2004) 2895. 10.1016/j.jeurceramsoc.2003.09.002Suche in Google Scholar
[4] D.Sciti, S.Guicciardi, A.Bellosi: J. Eur. Ceram. Soc.21 (2001) 621. 10.1016/S0955-2219(00)00254-5Suche in Google Scholar
[5] D.Foster, D. P.Thompson: J. Eur. Ceram. Soc.19 (1999) 2823. 10.1016/S0955-2219(99)00060-6Suche in Google Scholar
[6] S.Baud, F.Thevenot: Mater. Chem. Phys.67 (2001) 165. 10.1016/S0254-0584(00)00435-1Suche in Google Scholar
[7] Y.-W.Kim, J.-Y.Kim, S. H.Rhee, D.-Y.Kim: J. Eur. Ceram. Soc.20 (2000) 945. 10.1016/S0955-2219(99)00239-3Suche in Google Scholar
[8] M. F.Zawrah, L.Shaw: Ceram. Int.30 (2004) 721. 10.1016/j.ceramint.2003.07.017Suche in Google Scholar
[9] M.Burghartz, H.Matzke, C.Leger, G.Vambenepe: J. Alloys Compd.271-273 (1998) 544. 10.1016/S0925-8388(98)00149-2Suche in Google Scholar
[10] H.Matzke, V. V.Rondinella, T.Wiss: J. Nucl. Mater.274 (1999) 47. 10.1016/S0022-3115(99)00062-8Suche in Google Scholar
[11] Y. W.Lee, S. C.Lee, H. S.Kim, C. Y.Joung, C.Degueldre: J. Nucl. Mater.319 (2003) 15. 10.1016/S0022-3115(03)00128-4Suche in Google Scholar
[12] V. D.Kristic, M. D.Vlajic, R. A.Verrall: Key Engineering Materials122-124 (1996) 387. 10.4028/www.scientific.net/KEM.122-124.387Suche in Google Scholar
[13] R. A.Verrall, M. D.Vlajic, V. D.Krstic: J. Nucl. Mater.274 (1999) 54. 10.1016/S0022-3115(99)00089-6Suche in Google Scholar
[14] D.Sciti, A.Bellosi: J. Mater. Sci.35 (2000) 3849. 10.1023/A:1004881430804Suche in Google Scholar
[15] A.Can, M.Herrmann, D. S.McLachlan, I.Sigalas, J.Adler: J. Eur. Ceram. Soc.26 (2006) 1707. 10.1016/j.jeurceramsoc.2005.03.253Suche in Google Scholar
[16] R. R.Lee, W.Wie: Ceram. Eng. Sci. Proc.11 (1990) 1094. 10.1002/9780470313008.ch39Suche in Google Scholar
[17] M.Miura, T.Yogo, S. I.Hirano: J. Mater. Sci.28 (1993) 3859. 10.1007/BF00353191Suche in Google Scholar
[18] J. F.Li, R.Watanabe: J. Ceram. Soc. Jpn.102 (1994) 727.Suche in Google Scholar
[19] G.Rixecker, I.Wiedmann, A.Rosinus, F.Aldinger: J. Eur. Ceram. Soc.21 (2001) 1013. 10.1016/S0955-2219(00)00317-4Suche in Google Scholar
[20] M.Nader, Doctoral thesis, University of Stuttgart, 1995.Suche in Google Scholar
[21] I.Wiedmann, Doctoral thesis, University of Stuttgart, 1998.Suche in Google Scholar
[22] http://www.bgmn.de/Suche in Google Scholar
[23] O.Fabrichnaya, M.Zinkevich, F.Aldinger: Int. J. Mat. Res.98 (2007) 838.Suche in Google Scholar
[24] Z.Pan, O.Fabrichnaya, H. J.Seifert, R.Neher, K.Brandt, M.Herrmann: J. Phase Equilibria and Diffusion, 31 (2010) 238. 10.1007/s11669-010-9695-7Suche in Google Scholar
[25] M.Medraj, R.Hammond, W. T.Thompson, R. A. L.Drew: Can. Metall. Q42 (2003) 495.Suche in Google Scholar
[26] V.Longo, L.Podda: J. Mat. Sci. Lett.16 (1981) 839.Suche in Google Scholar
[27] Z.Pan, H. J.Seifert, O.Fabrichnaya, R.Baney, J.Tulenko: 214th ECS Meeting, October 12–17, 2008, Honolulu, HI High Temperature Corrosion and Materials Chemistry 7, Editors: E. Wuchina, E. Opila, J. Fergus, T. Maruyama, D. Shifler, 16 (44), p 65–8010.1149/1.3224745Suche in Google Scholar
[28] K.Biswas, J.Schneider, G.Rixecker, F.Aldinger: Scripta Mater.53 (2005) 591. 10.1016/j.scriptamat.2005.04.024Suche in Google Scholar
[29] R.Huang, H.Gu, G.Rixecker, F.Aldinger, C.Scheu, M.Rühle, Z. Metallkd, 96 (2005) 496.10.3139/146.018133Suche in Google Scholar
[30] H.Ye, G.Rixecker, S.Haug, F.Aldinger: J. Eur. Ceram. Soc.22 (2002) 2379. 10.1016/S0955-2219(02)00006-7Suche in Google Scholar
[31] P. E. D.Morgan, P. J.Carroll: J. Mat. Sci.12 (1977) 2343. 10.1007/BF00552255Suche in Google Scholar
[32] R. R.Wills, J. A.Cunningham: J. Mat. Sci.12 (1977) 208. 10.1007/BF00738488Suche in Google Scholar
[33] C.Gueneau, C.Chatillon, B.Sundman: J. Nucl. Mater.378 (2008) 257. 10.1016/j.jnucmat.2008.06.013Suche in Google Scholar
© 2010, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- 2nd Sino-German Symposium on Computational Thermodynamics and Kinetics and their Applications to Solidification
- Basic
- Multiscale simulations on the grain growth process in nanostructured materials
- Thermodynamic re-modeling of the Co–Gd system
- Microstructure and tribological properties of in-situ Y2O3/Ti-5Si alloy composites
- Phase relations in the ZrO2–Nd2O3–Y2O3 system: experimental study and CALPHAD assessment
- Phase transition in nanocrystalline iron: Atomistic-level simulations
- Thermodynamic assessment of the Cr–Al–Nb system
- Experimental investigation and thermodynamic modeling of the Cu–Mn–Zn system
- Elastic constants and thermophysical properties of Al–Mg–Si alloys from first-principles calculations
- Predicting microsegregation in multicomponent aluminum alloys – progress in thermodynamic consistency
- Phase reaction of ceria in LPS–SiC with Al2O3–Y2O3 and AlN–Y2O3 additives
- Applied
- Phase equilibria in the Fe–Ti–V system
- A thermodynamic description of the Ce–La–Mg system
- Molar volume calculation of Ga–Bi–X (X=Sn, In) liquid alloys using the general solution model
- Microstructural analysis in the vacuum brazing of copper to copper using a phosphor–copper brazing filler metal
- Microstructural development of the hot extruded magnesium alloy AZ31 under cyclic testing conditions
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- 2nd Sino-German Symposium on Computational Thermodynamics and Kinetics and their Applications to Solidification
- Basic
- Multiscale simulations on the grain growth process in nanostructured materials
- Thermodynamic re-modeling of the Co–Gd system
- Microstructure and tribological properties of in-situ Y2O3/Ti-5Si alloy composites
- Phase relations in the ZrO2–Nd2O3–Y2O3 system: experimental study and CALPHAD assessment
- Phase transition in nanocrystalline iron: Atomistic-level simulations
- Thermodynamic assessment of the Cr–Al–Nb system
- Experimental investigation and thermodynamic modeling of the Cu–Mn–Zn system
- Elastic constants and thermophysical properties of Al–Mg–Si alloys from first-principles calculations
- Predicting microsegregation in multicomponent aluminum alloys – progress in thermodynamic consistency
- Phase reaction of ceria in LPS–SiC with Al2O3–Y2O3 and AlN–Y2O3 additives
- Applied
- Phase equilibria in the Fe–Ti–V system
- A thermodynamic description of the Ce–La–Mg system
- Molar volume calculation of Ga–Bi–X (X=Sn, In) liquid alloys using the general solution model
- Microstructural analysis in the vacuum brazing of copper to copper using a phosphor–copper brazing filler metal
- Microstructural development of the hot extruded magnesium alloy AZ31 under cyclic testing conditions
- DGM News
- DGM News