Thermodynamic re-modeling of the Co–Gd system
-
Wei Wang
Abstract
The Co–Gd system was re-assessed using the CALPHAD technique. The solution phases (liquid, body-centered cubic, face-centered cubic and hexagonal close-packed) were described by the substitutional solution model. The temperature dependence of the interaction parameters of the liquid phase was separately expressed by the linear function and Kaptay equation. The intermetallic compounds Co17Gd2 and Co5Gd, which have the same CaCu5-type structure, were treated as one phase and described by a three-sublattice model (Co2, Gd)(Co2, Gd)2Co15, with Co2 and Gd mixing on the first and second sublattices and the third sublattice occupied by Co. The other compounds (Co7Gd2, Co3 Gd, Co2Gd, Co3Gd4 and CoGd3) were treated as stoichiometric compounds. Two sets of self-consistent thermodynamic parameters of the Co–Gd system were obtained.
References
[1] K. H. J.Buschow: Rep. Prog. Phys.40 (1977) 1179.10.1088/0034-4885/40/10/002Search in Google Scholar
[2] K. H. J.Buschow: Mat. Res. Bull.19 (1984) 935.10.1016/0025-5408(84)90056-4Search in Google Scholar
[3] K. H. J.Buschow: J. Less-Common Met.31 (1972) 359.10.1016/0022-5088(73)90029-5Search in Google Scholar
[4] Z. G.Zhao, F. R.de Boer, K. H. J.Buschow: J. Alloys Compd.278 (1998) 69. 10.1016/S0925-8388(98)00578-7Search in Google Scholar
[5] F.Canepa, M.Napoletano, P.Manfrinetti, A.Palenzona, S.Cirafici, F.Merlo: J. Magn. Magn. Mater.220 (2000) 39.10.1016/S0304-8853(00)00471-6Search in Google Scholar
[6] Y.Togami, K.Kobayashi, K.Sato, T.Teranishi: J. Appl. Phys.53 (1982) 2335. 10.1063/1.330811Search in Google Scholar
[7] A. V.Svalov, A.Fernandez, V. O.Vas'kovskiy, M.Tejedor, J. M.Barandiarán, I.Orue, G. V.Kurlyandskaya: J. Magn. Magn. Mater.304 (2006) e703. 10.1016/j.jmmm.2006.02.192Search in Google Scholar
[8] X. B.Liu, Z.Altounian: J. Magn. Magn. Mater.292 (2005) 83.10.1016/j.jmmm.2004.10.100Search in Google Scholar
[9] J. M.Riveiro, J. P.Andrés, J.Colino: J. Magn. Magn. Mater.198-199 (1999) 428.Search in Google Scholar
[10] A. T.Dinsdale: SGTE pure elements (unary) database, Version 4.5 (2006).Search in Google Scholar
[11] M.Hillert: J. Alloys Compd.320 (2001) 161.10.1016/S0925-8388(00)01481-XSearch in Google Scholar
[12] O.Redlich, A. T.Kister: Ind. Eng. Chem.40 (1948) 345.10.1021/ie50458a036Search in Google Scholar
[13] G.Kaptay: Calphad28 (2004) 115.10.1016/j.calphad.2004.08.005Search in Google Scholar
[14] R.Schmid-Fetzer, D.Andersson, P. Y.Chevalier, L.Eleno, O.Fabrichnaya, U. R.Kattner, B.Sundman, C.Wang, A.Watson, L.Zabdyr, M.Zinkevich: Calphad31 (2007) 38.10.1016/j.calphad.2006.02.007Search in Google Scholar
[15] D. A.Keller, S. G.Sankar, R. S.Craig, W. E.Wallace: Am. Inst. Phys. Conf. Proc. 18 (1974) 1207.Search in Google Scholar
[16] S. B. K.Leghari: J. Natural Sci. Math.29 (1) (1989) 69.Search in Google Scholar
[17] M.Baricco, C.Antonione, L.Battezzati: Scr. Metall.21 (1987) 849. 10.1016/0036-9748(87)90335-8Search in Google Scholar
[18] W. Q.Ge, C. H.Wu, Y. C.Chuang: Z. Metallkd.83 (1992) 300.Search in Google Scholar
[19] K. H. J.Buschow, F. J. A.Den Broeder: J. Less-Common Met.33 (1973) 191. 10.1016/0022-5088(73)90038-6Search in Google Scholar
[20] K. H. J.Buschow, A. S.van der Goot: J. Less-Common Met.18 (1969) 249. 10.1016/0022-5088(69)90140-4Search in Google Scholar
[21] K. H. J.Buschow: J. Less-Common Met.11 (1966) 204.10.1016/0022-5088(66)90006-3Search in Google Scholar
[22] J. H.Wernick, S.Geller: Acta Cryst.12 (1959) 662.10.1107/S0365110X59001955Search in Google Scholar
[23] J. H.Wernick, S.Geller: Trans. AIME218 (1960) 866.Search in Google Scholar
[24] A. E.Dwight: Trans. ASM53 (1961) 479.Search in Google Scholar
[25] W.Ostertag, K. J.Strnat: Acta Cryst.21 (1966) 560.10.1107/S0365110X66003451Search in Google Scholar
[26] V. F.Novy, R. C.Vickery, E. V.Kleber: Trans. AIME221 (1961) 588.Search in Google Scholar
[27] M.Hillert, L. I.Staffansson: Acta Chem. Scand.24 (1970) 3618.10.3891/acta.chem.scand.24-3618Search in Google Scholar
[28] B.Sundman, J.Agren: J. Phys. Chem. Solids42 (1981) 297.10.1016/0022-3697(81)90144-XSearch in Google Scholar
[29] M.Hillert, B.Jansson, B.Sundman: Z. Metallkd.79 (1988) 81.Search in Google Scholar
[30] Z.Du, D.Lü: J. Alloys Compd.373 (2004) 171.Search in Google Scholar
[31] Y.Khan: Z. Metallkd.65 (1974) 489.10.1515/ijmr-1974-650706Search in Google Scholar
[32] C. H.Wu, Y. C.Chuang, X. P.Su: Z. Metallkd.82 (1991) 73.Search in Google Scholar
[33] E. F.Bertaut, R.Lemaire, J.Schweizer: Bull. Soc. Fr. Miner. Crist.88 (1965) 580.Search in Google Scholar
[34] K. H. J.Buschow, A. S.Van der Goot: J. Less-Common Met.14 (1968) 323. 10.1016/0022-5088(68)90037-4Search in Google Scholar
[35] K. H. J.Buschow: Z. Metallkd.57 (1966) 728.10.1515/ijmr-1966-571003Search in Google Scholar
[36] J.Pelleg, O. N.Carlson: J. Less-Common Met.9 (1965) 281.10.1016/0022-5088(65)90021-4Search in Google Scholar
[37] I. V.Nikolaenko, M. A.Turchanin: Tasplavy5 (1989) 77.Search in Google Scholar
[38] S. S.Deodhar, P. J.Ficalora: Metall. Trans. A6 (1975) 1909.Search in Google Scholar
[39] C.Colinet, A.Pasturel: J. Less-Common Met.119 (1986) 167.10.1016/0022-5088(86)90207-9Search in Google Scholar
[40] J.Schott, F.Sommer: J. Less-Common Met.119 (1986) 307.10.1016/0022-5088(86)90691-0Search in Google Scholar
[41] C.Colinet, A.Pasturel, K. H. J.Buschow: Metall. Trans. A18 (1987) 903. 10.1007/BF02646931Search in Google Scholar
[42] E.Burzo: Phys. Rev. B6 (1972) 2882.10.1103/PhysRevB.6.2882Search in Google Scholar
[43] R.Lemaire: Cobalt32 (1966) 132.Search in Google Scholar
[44] R.Lemaire: Cobalt33 (1966) 201.Search in Google Scholar
[45] Z. K.Liu, W. J.Zhang, B.Sundman: J. Alloys Compd.226 (1995) 33. 10.1016/0925-8388(95)01578-7Search in Google Scholar
[46] B.Sundman, B.Jansson, J.-O.Andersson: Calphad9 (1985) 153.10.1016/0364-5916(85)90021-5Search in Google Scholar
© 2010, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- 2nd Sino-German Symposium on Computational Thermodynamics and Kinetics and their Applications to Solidification
- Basic
- Multiscale simulations on the grain growth process in nanostructured materials
- Thermodynamic re-modeling of the Co–Gd system
- Microstructure and tribological properties of in-situ Y2O3/Ti-5Si alloy composites
- Phase relations in the ZrO2–Nd2O3–Y2O3 system: experimental study and CALPHAD assessment
- Phase transition in nanocrystalline iron: Atomistic-level simulations
- Thermodynamic assessment of the Cr–Al–Nb system
- Experimental investigation and thermodynamic modeling of the Cu–Mn–Zn system
- Elastic constants and thermophysical properties of Al–Mg–Si alloys from first-principles calculations
- Predicting microsegregation in multicomponent aluminum alloys – progress in thermodynamic consistency
- Phase reaction of ceria in LPS–SiC with Al2O3–Y2O3 and AlN–Y2O3 additives
- Applied
- Phase equilibria in the Fe–Ti–V system
- A thermodynamic description of the Ce–La–Mg system
- Molar volume calculation of Ga–Bi–X (X=Sn, In) liquid alloys using the general solution model
- Microstructural analysis in the vacuum brazing of copper to copper using a phosphor–copper brazing filler metal
- Microstructural development of the hot extruded magnesium alloy AZ31 under cyclic testing conditions
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- 2nd Sino-German Symposium on Computational Thermodynamics and Kinetics and their Applications to Solidification
- Basic
- Multiscale simulations on the grain growth process in nanostructured materials
- Thermodynamic re-modeling of the Co–Gd system
- Microstructure and tribological properties of in-situ Y2O3/Ti-5Si alloy composites
- Phase relations in the ZrO2–Nd2O3–Y2O3 system: experimental study and CALPHAD assessment
- Phase transition in nanocrystalline iron: Atomistic-level simulations
- Thermodynamic assessment of the Cr–Al–Nb system
- Experimental investigation and thermodynamic modeling of the Cu–Mn–Zn system
- Elastic constants and thermophysical properties of Al–Mg–Si alloys from first-principles calculations
- Predicting microsegregation in multicomponent aluminum alloys – progress in thermodynamic consistency
- Phase reaction of ceria in LPS–SiC with Al2O3–Y2O3 and AlN–Y2O3 additives
- Applied
- Phase equilibria in the Fe–Ti–V system
- A thermodynamic description of the Ce–La–Mg system
- Molar volume calculation of Ga–Bi–X (X=Sn, In) liquid alloys using the general solution model
- Microstructural analysis in the vacuum brazing of copper to copper using a phosphor–copper brazing filler metal
- Microstructural development of the hot extruded magnesium alloy AZ31 under cyclic testing conditions
- DGM News
- DGM News