Startseite Multiscale simulations on the grain growth process in nanostructured materials
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Multiscale simulations on the grain growth process in nanostructured materials

Paper presented at the 2nd Sino-German Symposium on Computational Thermodynamics and Kinetics and their Applications to Solidification
  • Reza Darvishi Kamachali , Jun Hua , Ingo Steinbach und Alexander Hartmaier
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this work, multi-phase field and molecular dynamics simulations have been used to investigate nanoscale grain growth mechanisms. Based on experimental observations, the combination of grain boundary expansion and vacancy diffusion has been considered in the multi-phase field model. The atomistic mechanism of boundary movement and the free volume redistribution during the growth process have been investigated using molecular dynamics simulations. According to the multi-phase field results, linear grain growth in nanostructured materials at low temperature can be explained by vacancy diffusion in the stress field around the grain boundaries. Molecular dynamics simulations confirm the observation of linear grain growth for nanometresized grains. The activation energy of grain boundary motion in this regime has been determined to be of the order of onetenth of the self-diffusion activation energy, which is consistent with experimental data. Based on the simulation results, the transition from linear to normal grain growth is discussed in detail and a criterion for this transition is proposed.

References

[1] K. S.Kumar, H. V.Swygenhoven, S.Suresh: Acta Mater.51 (2003) 5743. 10.1016/j.actamat.2003.08.032Suche in Google Scholar

[2] B. Q.Han, E. J.Lavernia, F. A.Mohamed: Rev. Adv. Mater. Sci.9 (2005) 1. 10.4028/www.scientific.net/AMR.9.1Suche in Google Scholar

[3] D.Wolf, V.Yamakov, S. R.Phillpot, A.Mukherjee, H.Gleiter: Acta Mater.53 (2005) 1. 10.1016/j.actamat.2004.08.045Suche in Google Scholar

[4] H.Gleiter: Prog. Mater. Sci.33 (1989) 223.10.1016/0079-6425(89)90001-7Suche in Google Scholar

[5] T. R.Malow, C. C.Koch: Acta Mater.45 (1997) 2177.10.1016/S1359-6454(96)00300-XSuche in Google Scholar

[6] J. H.Driver: Scripta Mater.51 (2004) 819.10.1016/j.scriptamat.2004.05.014Suche in Google Scholar

[7] X.Song, K.Yang, J.Zhang: J. Nanosci. Nanotech.5 (2005) 2155.; 10.1166/jnn.2005.412Suche in Google Scholar PubMed

[8] M.Ames, J.Markmann, R.Karos, A.Michels, A.Tschope, R.Birringer: Acta Mater.56 (2008) 4255.10.1016/j.actamat.2008.04.051Suche in Google Scholar

[9] I. A.Ovid'ko: Phil. Mag. Let.83 (2003) 611.10.1080/09500830310001593463Suche in Google Scholar

[10] F.Ebrahimi, H.Li: Scripta Mater.55 (2006) 263.10.1016/j.scriptamat.2006.03.053Suche in Google Scholar

[11] A. J.Haslam, D.Moldovan, S. R.Phillpot, D.Wolf, H.Gleiter: Comp. Mater. Sci.23 (2002) 15.10.1016/S0927-0256(01)00218-XSuche in Google Scholar

[12] M.Upmanyu, D. J.Srolovitz, L. S.Shvindlerman, G.Gottstein: Acta Mater.50 (2002) 1405. 10.1016/S1359-6454(01)00446-3Suche in Google Scholar

[13] Y.Estrin, G.Gottstein, L. S.Shvindlerman: Scripta Mater.41 (1999) 385. 10.1016/S1359-6462(99)00167-0Suche in Google Scholar

[14] M.Upmanyu, D. J.Srolovitz, L. S.Shvindlerman, G.Gottstein: Intf. Sci.6 (1998) 287.Suche in Google Scholar

[15] I.Steinbach, X.Song, A.Hartmaier: Phil. Mag.90 (2010) 485.10.1080/14786430903074763Suche in Google Scholar

[16] I.Steinbach: Mod. Sim. Mater. Sci. Eng.17 (2009) 073001.10.1088/0965-0393/17/7/073001Suche in Google Scholar

[17] I.Steinbach, M.Apel: Phys. D217 (2006) 153.10.1016/j.physd.2006.04.001Suche in Google Scholar

[18] Y.Mishin, M. J.Mehl, D. A.Papaconstantopoulos, A. F.Voter, J. D.Kress: Phys. Rev. B63 (2001) 224106.10.1103/PhysRevB.63.224106Suche in Google Scholar

[19] E.Bitzek, P.Koskinen, F.Géhler, M.Moseler, P.Gumbsch: Phys. Rev. Let.97 (2006) 170201. ; 10.1103/PhysRevLett.97.170201Suche in Google Scholar PubMed

[20] J.Stadler, R.Mikulla, H. R.Trebin: Int. J. Mod. Phys. C8 (1997) 1131. 10.1142/S0129183197000990Suche in Google Scholar

[21] J.Li: Mod. Sim. Eng. (2003) 173.10.1088/0965-0393/11/2/305Suche in Google Scholar

[22] D.Farkas, S.Mohanty, J.Monk: Phys. Rev. Let.98 (2007) 165502.; 10.1103/PhysRevLett.98.165502Suche in Google Scholar PubMed

[23] H. J.Frost, M. F.Ashby, Deformation-mechanismMaps: the plasticity and creep of metals and ceramics, Franklin Book Company (1982).Suche in Google Scholar

[24] M.Chauhan, F. A.Mohamed: Mater. Sci. Eng. A427 (2006) 7.10.1016/j.msea.2005.10.039Suche in Google Scholar

[25] G. J.Ackland, A. P.Jones: Phys. Rev. B73 (2006) 054104.10.1103/PhysRevB.73.054104Suche in Google Scholar

[26] Y.Estrin, G.Gottstein, E.Rabkin, L. S.Shvindlerman: Scripta Mater.43 (2000) 141.10.1016/S1359-6462(00)00383-3Suche in Google Scholar

[27] Y.Estrin, G.Gottstein, L. S.Shvindlerman: Acta Mater.47 (1999) 3541. 10.1016/S1359-6454(99)00235-9Suche in Google Scholar

[28] C. E.Krill, L.Helfen, D.Michels, H.Natter, A.Fitch, O.Masson, R.Birringer: Phys. Rev. Let.86 (2001) 842. ; 10.1103/PhysRevLett.86.842Suche in Google Scholar PubMed

[29] Y.Estrin, G.Gottstein, E.Rabkin, L. S.Shvindlerman: Acta Mater.49 (2001) 673. 10.1016/S1359-6454(00)00344-XSuche in Google Scholar

[30] J.Wang, Y.Iwahashi, Z.Horita, M.Furukawa, M.Nemoto, R. Z.Valiev, T. G.Langdon: Acta Mater.44 (1996) 2973.10.1016/1359-6454(95)00395-9Suche in Google Scholar

[31] J.Lian, R. Z.Valiev, B.Baudelet: Acta Met.43 (1995) 4165.10.1016/0956-7151(95)00087-CSuche in Google Scholar

[32] X.Song, J.Zhang, L.Li, K.Yang, G.Liu: Acta Mater.54 (2006) 5541. 10.1016/j.actamat.2006.07.040Suche in Google Scholar

Received: 2010-2-10
Accepted: 2010-5-7
Published Online: 2013-06-11
Published in Print: 2010-11-01

© 2010, Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110419/pdf?lang=de
Button zum nach oben scrollen