Home Steady state creep in a rotating composite disc of variable thickness
Article
Licensed
Unlicensed Requires Authentication

Steady state creep in a rotating composite disc of variable thickness

  • Dharmpal Deepak , Vinay K. Gupta and Ashok K. Dham
Published/Copyright: May 31, 2013
Become an author with De Gruyter Brill

Abstract

The steady state creep in a rotating disc having variable thickness and made of isotropic aluminium–silicon carbide particulate composite has been investigated. Using threshold stress based creep law, the general expressions for stresses and strain rates in the discs have been obtained. The expressions are used to calculate the distributions of stresses and strain rates in different discs viz (i) disc having constant thickness (ii) disc having linearly varying thickness and (iii) disc having hyperbolically varying thickness. The volume of different discs is kept the same. The study revealed that the stresses and strain rates in the disc could be reduced to a significant extent by varying the disc profile. The linearly varying disc exhibits the lowest values of stresses and strain rates compared to those observed in hyperbolic or uniform thickness disc.


* Correspondence address, Dr. Vinay Kumar Gupta, Reader, Department of Mechanical Engineering, University College of Engineering, Punjabi University, Patiala-147002, India, Tel.: +91 175 228 0166, Fax: +91 175 304 6333, E-mail:

References

[1] S.B.Singh, S.Ray: Mechanics of Materials.34 (2002) 363. 10.1016/S0167-6636(02)00132-1Search in Google Scholar

[2] L.H.You, X.Y.You, J.J.Zhang, J.Li: Z. angew. Math. Phys.58 (2007) 1068. 10.1007/s00033-007-5094-2Search in Google Scholar

[3] V.K.Gupta, S.B.Singh, H.N.Chandrawat, S.Ray: J. of Engg. Mater. Tech.127 (2005) 97. 10.1115/1.1839187Search in Google Scholar

[4] M.H.Hojjati, A.Hassani: Int. J. of Pressure Vessels and Piping.85 (2008) 694. 10.1016/j.ijpvp.2008.02.010Search in Google Scholar

[5] M.Bayat, M.Saleem, B.B.Sahari, A.M.S.Hakouda, E.Mahdi: Mech. Res.35 (2008) 283. 10.1016/j.mechrescom.2008.02.007Search in Google Scholar

[6] B.Farshi, J.Bidabadi: Int. J. of Pressure Vessels and Piping.85 (2008) 507. 10.1016/j.ijpvp.2008.01.008Search in Google Scholar

[7] M.Laskaj, B.Murphy, K.Houngan: Improving the efficiency of cooling the front disc brake on a V8 racing car. Project report, Monash University, Melbourne (1999).Search in Google Scholar

[8] B.Farshi, H.Jahed, A.Mehrabian: Comp. Struct.82 (2004) 773. 10.1016/j.compstruc.2004.02.005Search in Google Scholar

[9] V.K.Gupta, N.Kwatra, S.Ray: Engg. Comp. Int. J. for Computer Aided Engineering and Software.24 (2007) 151. 10.1108/02644400710729545Search in Google Scholar

[10] T.G.Nieh: Metall. Trans. A15 (1984) 139.10.1007/BF02644396Search in Google Scholar

[11] T.G.Nieh, K.Xia, T.G.Langdon: J. of Engg. Mater. Tech.110 (1988) 77. 10.1115/1.3226033Search in Google Scholar

[12] V.K.Gupta, S.B.Singh, H.N.Chandrawat, S.Ray: Europ. J. of Mech. A/Solids.23 (2004) 335. 10.1016/j.euromechsol.2003.11.005Search in Google Scholar

[13] U.Guven, A.Celik: Mech. Res. Communications.28 (2001) 271.10.1016/S0093-6413(01)00173-2Search in Google Scholar

[14] Y.Orcan, A.N.Eraslan: Mech. Res. Communications.29 (2002) 269. 10.1016/S0093-6413(02)00261-6Search in Google Scholar

[15] B.M.Ma: J. of the Franklin Inst.269 (1960) 408. 10.1016/0016-0032(60)90174-5Search in Google Scholar

[16] B.M.Ma: J. of the Franklin Inst.271 (1961) 40. 10.1016/S0016-0032(61)91014-6Search in Google Scholar

[17] N.S.Bhatnagar, P.S.Kulkarni, V.K.Arya: Nuclear Engg. Design.91 (1986) 121. 10.1016/0029-5493(86)90200-1Search in Google Scholar

[18] S.C.Tjong, Z.Y.Ma: Mater. Sci. Engg., R: Report.29 (2000) 49. 10.1016/S0927-796X(00)00024-3Search in Google Scholar

[19] R.S.Mishra, A.B.Pandey: Metall. Trans. A21 (1990) 2089.10.1007/BF02647258Search in Google Scholar

[20] A.B.Pandey, R.S.Mishra, Y.R.Mahajan: Acta Metall. Mater.40 (1992) 2045. 10.1016/0956-7151(92)90190-PSearch in Google Scholar

[21] G.Gonzalez-Doncel, O.D.Sherby: Acta Metall Mater.41 (1993) 2797. 10.1016/0956-7151(93)90094-9Search in Google Scholar

[22] A.B.Pandey, R.S.Mishra, Y.R.Mahajan: Mater. Sci. Engg. A189 (1994) 95.10.1016/0921-5093(94)90405-7Search in Google Scholar

[23] K.T.Park, E.J.Lavernia, F.A.Mohamed: Acta Metall Mater.38 (1990) 2149. 10.1016/0956-7151(90)90082-RSearch in Google Scholar

[24] F.A.Mohamed, K.T.Park, E.J.Lavernia: Mater. Sci Engg. A150 (1992) 21.10.1016/0921-5093(90)90004-MSearch in Google Scholar

[25] K.T.Park, F.A.Mohamed: Metall. Trans. A26 (1995) 3119.10.1007/BF02669441Search in Google Scholar

[26] J.Cadek, H.Oikawa, V.Sustek: Mater. Sci. Engg. A190 (1995) 9.10.1016/0921-5093(94)09605-VSearch in Google Scholar

[27] H.Yoshioka, Y.Suzumura, J.Cadek, S.J.Zhu, K.Milicka: Mater. Sci. Engg. A248 (1998) 65.10.1016/S0921-5093(98)00518-8Search in Google Scholar

[28] Y.Li, F.A.Mohamed: Acta Mater.45 (1997) 4775. 10.1016/S1359-6454(97)00130-4Search in Google Scholar

[29] Y.Li, T.G.Langdon: Acta Mater.45 (1997) 4797. 10.1016/S1359-6454(97)00132-8Search in Google Scholar

[30] Y.Li, T.G.Langdon: Mater. Sci. Eng. A265 (1999) 276.10.1016/S0921-5093(98)01131-9Search in Google Scholar

[31] R.Lagneborg, B.Bergman: Metal Sci.10 (1976) 20.10.1179/030634576790431462Search in Google Scholar

[32] S.P.Timoshenko, J.N.Goodier: Theory of Elasticity, McGraw-Hill, Singapore (1970).Search in Google Scholar

[33] A.M.Wahl, G.O.Sankey, M.J.Manjoine, E.Shoemaker: J. of Appl. Mech.21 (1954) 225.Search in Google Scholar

Received: 2009-2-28
Accepted: 2009-11-13
Published Online: 2013-05-31
Published in Print: 2010-06-01

© 2010, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. IJMR's most downloaded papers from 2008 to the present: a review
  5. Basic
  6. Effect of temperature and strain rate on strain hardening and deformation mechanisms of high manganese austenitic steels
  7. Size effects resulting from local strain hardening; microstructural evaluation of Fe-3% Si and Cu deformed in tension and deep drawing using orientation gradient mapping (OGM)
  8. Microstructure of super-austenitic steels after long-term annealing
  9. Investigation of tensile–compressive yield asymmetry and the role of deformation twin in extruded pure magnesium
  10. Neutron diffraction study on liquid Al–Ni alloys
  11. Investigation of the atomic structure of molten As–Se alloys using X-ray diffraction
  12. A theoretical approach to the elastic behaviour of compact and hollow spherical particles reinforced metal-matrix composites
  13. Applied
  14. Adsorption of nucleotides on the rutile (110) surface
  15. Effect of cyclic heat treatment on the microstructures and mechanical properties of Ti–Si alloys
  16. Deleterious phases resulting from the induction bending of thick-walled super-duplex pipework
  17. Steady state creep in a rotating composite disc of variable thickness
  18. Influence of data conversion methods from torsion tests on the Garofalo equation parameters for a high nitrogen steel
  19. High-alloy ferritic cast irons with different graphite microstructures for exhaust manifolds and turbocharger housings
  20. Microstructure and mechanical properties of friction stir butt welded dissimilar pure copper/brass alloy plates
  21. The heat capacity measurements of CoSb3-based Skutterudite compounds
  22. DGM News
  23. DGM News
Downloaded on 17.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110335/html
Scroll to top button