Home Technology Size effects resulting from local strain hardening; microstructural evaluation of Fe-3% Si and Cu deformed in tension and deep drawing using orientation gradient mapping (OGM)
Article
Licensed
Unlicensed Requires Authentication

Size effects resulting from local strain hardening; microstructural evaluation of Fe-3% Si and Cu deformed in tension and deep drawing using orientation gradient mapping (OGM)

  • Mark Henning and Horst Vehoff
Published/Copyright: May 31, 2013

Abstract

Mesoscale strain hardening phenomena and the effect on the macroscale behavior (yield under tension, earing in deep drawing) are investigated in Fe-3 % Si and Cu.

Fe-3 % Si shows a smooth upper and lower yield point depending on grain size and sheet thickness which can be attributed to a lack of mobile dislocations. A free surface effect (reduced strain hardening of near-surface regions) is found for sheets of 300 μm and 960 μm thickness, but limited to small and medium strains.

By means of the new orientation gradient mapping, which is correlated with local strain hardening, the local deformation microstructure is investigated in incremental tensile tests and incremental deep drawing for Fe-3 % Si and Cu. The orientation gradient distribution significantly depends on the material. Based on these results phenomenological descriptions of the microstructure at the mesoscale are proposed. From orientation gradient mapping, geometrically necessary and statistical orientation gradients are evaluated which agree well with results of transmission electron microscopy investigations of geometrically necessary boundaries and incidental dislocation boundaries. A constitutive equation correlating orientation gradient mapping and local dislocation density is proposed.


* Correspondence address, Prof. Dr. rer. nat. Horst Vehoff, Universität des Saarlandes, Werkstoffwissenschaft und Methodik (WWM), Gebäude D2.2, Dr. Mark Henning, Postfach 15 11 50, D-66041 Saarbrücken, Germany, Tel.: +49 681 302 5108, Fax: +49 681 302 5015, E-mail:

References

[1] M.Henning, H.Vehoff: Acta Metall. Mater.53 (2005) 12851292.10.1016/j.actamat.2004.10.052Search in Google Scholar

[2] T.Fülöp, W.A.M.Brekelmans, M.G.D.Geers: J. Mater. Process. Technol.174 (2006) 233238. 10.1016/j.jmatprotec.2006.01.006Search in Google Scholar

[3] E.O.Hall: Proc. Phys. Soc. B64 (1951) 747753. 10.1088/0370-1301/64/9/303Search in Google Scholar

[4] N.J.Petch: J. Iron & Steel Inst.174 (1953) 2528.Search in Google Scholar

[5] N.Brown, K.F.Lukens: Acta Metall. Mater.9 (1961) 106111. 10.1016/0001-6160(61)90053-0Search in Google Scholar

[6] W.B.Morrison, W.C.Leslie: Metall. Trans.4 (1973) 379381. 10.1007/BF02649647Search in Google Scholar

[7] K.J.Kurzydlowski: Scr. Metall. Mater.24 (1990) 879883. 10.1016/0956-716X(90)90129-5Search in Google Scholar

[8] M.Henning, H.Vehoff: Mater. Sci. Eng. A452 (2007) 602613. 10.1016/j.msea.2006.11.113Search in Google Scholar

[9] J.ProhászkaJ.Dobránszky: Mater. Sci. Forum414–415 (2003) 311316. 10.4028/www.scientific.net/MSF.414-415.311Search in Google Scholar

[10] M.F.Ashby: Philos. Mag. A21 (1970) 399424. 10.1080/14786437008238426Search in Google Scholar

[11] N.A.Fleck, G.M.Muller, M.F.Ashby, J.W.Hutchinson: Acta Metall. Mater.42 (1994) 475487. 10.1016/0956-7151(94)90502-9Search in Google Scholar

[12] N.A.Fleck, J.W.Hutchinson: Adv. Appl. Mech.33 (1997) 295361. 10.1016/S0065-2156(08)70388-0Search in Google Scholar

[13] H.Gao, Y.Huang, W.D.Nix: Naturwissenschaften86 (1999) 507515. 10.1007/s001140050665Search in Google Scholar

[14] H.Unckel: Z. Metallkd.12 (1937) 413417.Search in Google Scholar

[15] W.T.Pell-Walpole: J. Inst. Metals69 (1943) 131146.Search in Google Scholar

[16] R.W.Armstrong: J. Mech. Phys. Solids9 (1961) 196199. 10.1016/0022-5096(61)90018-7Search in Google Scholar

[17] M.Reihle: Mitteilungen der Forschungsgesellschaft Blechverarbeitung12/13 (1961) 141150.Search in Google Scholar

[18] S.Miyazaki, H.Fujita, H.Hiraoka: Scr. Metall.13 (1979) 447449. 10.1016/0036-9748(79)90067-XSearch in Google Scholar

[19] S.Miyazaki, K.Shibata, H.Fujita: Acta Metall. Mater.27 (1979) 855862. 10.1016/0001-6160(79)90120-2Search in Google Scholar

[20] R.Kals, F.Vollertsen, M.Geiger, in: H. Kals (Ed.), Sheet Metal 1996 – Proceedings of the 4th International Conference, Vol. 2, 1996, pp. 6575.Search in Google Scholar

[21] L.V.Raulea, L.E.Govaert, F.P.T.Baaijens: Adv. Technol. Plast.2 (1999) 939944.Search in Google Scholar

[22] T.A.Kals, R.Eckstein: J. Mater. Process. Technol.103 (2000) 95101. 10.1016/S0924-0136(00)00391-5Search in Google Scholar

[23] L.V.Raulea, A.M.Goijaerts, L.E.Govaert, F.P.T.Baaijens: J. Mater. Process. Technol.115 (2001) 4448. 10.1016/S0924-0136(01)00770-1Search in Google Scholar

[24] H.Yasin, H.M.Zbib, M.A.Khaleel: Mater. Sci. Eng. A309 (2001) 294299. 10.1016/S0921-5093(00)01731-7Search in Google Scholar

[25] S.W.Banovic, M.D.Vaudin, T.H.Gnaeupel-Herold, D.M.Saylor, K.P.Rodbell: Mater. Sci. Eng. A380 (2004) 155170. 10.1016/j.msea.2004.03.084Search in Google Scholar

[26] N.Hansen: Mater. Sci. Eng. A409 (2005) 3945. 10.1016/j.msea.2005.04.061Search in Google Scholar

[27] R.Armstrong, I.Codd, R.M.Douthwaite, N.J.Petch: Philos. Mag. A7 (1962) 4558. 10.1080/14786436208201857Search in Google Scholar

[28] K.-H.Chia, K.Jung, H.Conrad: Mater. Sci. Eng. A409 (2005) 3238. 10.1016/j.msea.2005.03.117Search in Google Scholar

[29] R.T.A.Kals: Fundamentals on the Miniaturization of Sheet Metal Working Processes, Vol. 87 of Fertigungstechnologie – Erlangen, Meisenbach Verlag, Bamberg, 1998.Search in Google Scholar

[30] O.Watanabe, T.Kurata: Trans. ASME121 (1999) 156161.Search in Google Scholar

[31] G.Simons, C.Weippert, J.Dual, J.Villain: Mater. Sci. Eng. A416 (2006) 290299. 10.1016/j.msea.2005.10.060Search in Google Scholar

[32] Z.Gronostajski: J. Mater. Process. Technol.106 (2000) 4044. 10.1016/S0924-0136(00)00635-XSearch in Google Scholar

[33] I.Kovács, L.Zsoldos: Dislocations and plastic deformation, 1st Edition, Pergamon Press, Oxford, 1973.10.1016/B978-0-08-017062-6.50004-9Search in Google Scholar

[34] R.W.Cahn, P.Haasen: Physical metallurgy, part II, 3rd Edition, North-Holland Physics Publishing, Amsterdam, 1983.Search in Google Scholar

[35] G.I.Taylor: Proc. Roy. Soc. Lond. A145 (1934) 362415. 10.1098/rspa.1934.0106Search in Google Scholar

[36] M.Kuroda, V.Tvergaard, T.Ohashi: Model. Simul. Mater. Sci. Eng.15 (2007) S13S 22. 10.1088/0965-0393/15/1/S02Search in Google Scholar

[37] Y.Bergström, H.Hallén: Mater. Sci. Eng.55 (1982) 4961. 10.1016/0025-5416(82)90083-0Search in Google Scholar

[38] Y.Estrin: J. Mater. Process. Technol.80–81 (1998) 3339. 10.1016/S0924-0136(98)00208-8Search in Google Scholar

[39] F.Roters, D.Raabe, G.Gottstein: Acta Metall. Mater.48 (2000) 41814189.10.1016/S1359-6454(00)00289-5Search in Google Scholar

[40] K.Domkin, L.-E.Lindgren, P.Segle, in: D. Owen, E. Oñate (Eds.), Computational Plasticity – Fundamentals and Applications, Proc. VII Int. Conf. on Comput. Plast. COMPLAS VII, CIMNE, Barcelona, Spain, 2003, on CD-ROM.Search in Google Scholar

[41] K.Domkin, Constitutive models based on dislocation density–Formulation and implementation into finite element codes, Phd thesis, Luleå University of Technology (Sep. 2005).Search in Google Scholar

[42] N.Zárubová, B.Šesták: Phys. Status Solidi A30 (1975) 479488. 10.1002/pssa.2210300206Search in Google Scholar

[43] H.Saka, T.Imura: J. Phys. Soc. Jpn.32 (1972) 702716. 10.1143/JPSJ.32.702Search in Google Scholar

[44] J.W.Christian: Metall. Trans. A14 (1983) 12371256.10.1007/BF02664806Search in Google Scholar

[45] J.C.Suits, B.Chalmers: Acta Metall. Mater.12 (1961) 854860. 10.1016/0001-6160(61)90189-4Search in Google Scholar

[46] P.Haasen: Physikalische Metallkunde, 3rd Edition, Springer-Verlag, Berlin, 1994, s. 257260, 326330.10.1007/978-3-642-87849-7_2Search in Google Scholar

[47] H.H.Over, E.Lugscheider, O.Knotek: Z. Werkstofftech.14 (1983) 6469. 10.1002/mawe.19830140212Search in Google Scholar

[48] W.Sylwestrowicz, E.O.Hall: Proc. Phys. Soc. B64 (1951) 495502. 10.1088/0370-1301/64/6/305Search in Google Scholar

[49] N.J.Petch: Acta Metall. Mater.12 (1964) 5965. 10.1016/0001-6160(64)90054-9Search in Google Scholar

[50] B.Devincre, L.P.Kubin, C.Lemarchand, R.Madec: Mater. Sci. Eng. A309–310 (2001) 211219. 10.1016/S0921-5093(00)01725-1Search in Google Scholar

[51] H.M.Zbib, T.D.de la Rubia: J. Soc. Mater. Sci. Jpn. A (2001) 341347.Search in Google Scholar

[52] M.Henning: Größeneffekte auf die mechanischen Eigenschaften – Experiment und Simulation, Vol. 10 of Saarbrücker Reihe Materialwissenschaft und Werkstofftechnik, Shaker Verlag, Aachen (Germany) 2008.Search in Google Scholar

[53] S.R.Kalidindi, A.Bhattacharyya, R.D.Doherty: Adv. Mater.15 (2003) 13451348. 10.1002/adma.200304953Search in Google Scholar

[54] D.A.Hughes, Q.Liu, D.C.Chrzan, N.Hansen: Acta Metall. Mater.45 (1997) 105112.10.1016/S1359-6454(96)00153-XSearch in Google Scholar

[55] N.Hansen, X.Huang, W.Pantleon, G.Winther: Philos. Mag. A86 (2006) 39813994. 10.1080/14786430600654446Search in Google Scholar

[56] S.Panchanadeeswaran, R.D.Doherty: Scr. Metall. Mater.28 (1993) 213218. 10.1016/0956-716X(93)90565-ASearch in Google Scholar

[57] C.Lineau, C.Rey, P.V.de Lesegno: Mater. Sci. Eng. A234 (1997) 853856. 10.1016/S0921-5093(97)00336-5Search in Google Scholar

[58] C.Fukuoka, K.Morishima, H.Yoshizawa, K.Mino: Scr. Mater.46 (2002) 6166. 10.1016/S1359-6462(01)01197-6Search in Google Scholar

[59] D.Chandrasekaran, M.Nygårds: Acta Metall. Mater.51 (2003) 53755384.10.1016/S1359-6454(03)00394-XSearch in Google Scholar

[60] M.Kamaya, A.J.Wilkinson, J.M.Titchmarsh: Nucl. Eng. Des.235 (2005) 713725. 10.1016/j.nucengdes.2004.11.006Search in Google Scholar

[61] W.Pantleon: Scr. Mater.35 (1996) 511515. 10.1016/1359-6462(96)00164-9Search in Google Scholar

[62] S.Sun, B.L.Adams, W.E.King: Philos. Mag. A80 (2000) 925. 10.1080/01418610008212038Search in Google Scholar

[63] G.M.Pennock, M.R.Drury, P.W.Trimby, C.J.Spiers: J. Microsc.205 (2002) 285294. PMid:11996193Search in Google Scholar

[64] K.Verbeken, L.Kestens: Mater. Sci. Forum408–412 (2002) 559564. 10.4028/www.scientific.net/MSF.408-412.559Search in Google Scholar

[65] S.Zaefferer, J.-C.Kuo, Z.Zhao, M.Winning, D.Raabe: Acta Metall. Mater.51 (2003) 47194735.10.1016/S1359-6454(03)00259-3Search in Google Scholar

[66] D.J.Jensen: Ultramicroscopy67 (1997) 2534. 10.1016/S0304-3991(96)00110-6Search in Google Scholar

[67] A.Tatschl, O.Kolednik: Mater. Sci. Eng. A356 (2003) 447463. 10.1016/S0921-5093(03)00095-9Search in Google Scholar

[68] C.Thorning, M.A.J.Somers, J. A.Wert: Mater. Sci. Eng. A397 (2005) 215228. 10.1016/j.msea.2005.02.043Search in Google Scholar

[69] D.P.Field, S.I.Wright, P.Trivedi: Mater. Sci. Forum426–432 (2003) 37393744.10.4028/www.scientific.net/MSF.426-432.3739Search in Google Scholar

[70] W.Q.Cao, A.Godfrey, Q.Liu: J. Microsc.211 (2003) 219229.PMid:1295047110.1046/j.1365-2818.2003.01212.xSearch in Google Scholar PubMed

Received: 2008-10-5
Accepted: 2009-11-23
Published Online: 2013-05-31
Published in Print: 2010-06-01

© 2010, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. IJMR's most downloaded papers from 2008 to the present: a review
  5. Basic
  6. Effect of temperature and strain rate on strain hardening and deformation mechanisms of high manganese austenitic steels
  7. Size effects resulting from local strain hardening; microstructural evaluation of Fe-3% Si and Cu deformed in tension and deep drawing using orientation gradient mapping (OGM)
  8. Microstructure of super-austenitic steels after long-term annealing
  9. Investigation of tensile–compressive yield asymmetry and the role of deformation twin in extruded pure magnesium
  10. Neutron diffraction study on liquid Al–Ni alloys
  11. Investigation of the atomic structure of molten As–Se alloys using X-ray diffraction
  12. A theoretical approach to the elastic behaviour of compact and hollow spherical particles reinforced metal-matrix composites
  13. Applied
  14. Adsorption of nucleotides on the rutile (110) surface
  15. Effect of cyclic heat treatment on the microstructures and mechanical properties of Ti–Si alloys
  16. Deleterious phases resulting from the induction bending of thick-walled super-duplex pipework
  17. Steady state creep in a rotating composite disc of variable thickness
  18. Influence of data conversion methods from torsion tests on the Garofalo equation parameters for a high nitrogen steel
  19. High-alloy ferritic cast irons with different graphite microstructures for exhaust manifolds and turbocharger housings
  20. Microstructure and mechanical properties of friction stir butt welded dissimilar pure copper/brass alloy plates
  21. The heat capacity measurements of CoSb3-based Skutterudite compounds
  22. DGM News
  23. DGM News
Downloaded on 1.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.110343/html
Scroll to top button