Startseite Application of the phase-field method in predicting gas bubble microstructure evolution in nuclear fuels
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Application of the phase-field method in predicting gas bubble microstructure evolution in nuclear fuels

  • Shenyang Hu , Yulan Li , Xin Sun , Fei Gao , Ram Devanathan , Charles H. Henager und Mohammad A. Khaleel
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Fission product accumulation and gas bubble microstructure evolution in nuclear fuels strongly influence their thermo-mechanical properties such as thermal conductivity, gas release, volume swelling and cracking, and hence fuel performance. In this paper, a general phase-field model is developed to predict gas bubble formation and evolution. Important materials processes and thermodynamic properties including the generation of gas atoms and vacancies, sinks for vacancies and gas atoms, elastic interaction among defects, gas re-solution, and inhomogeneity of elasticity and diffusivity are accounted for in the model. The results demonstrate the potential applications of the phase-field method in investigating: 1) heterogeneous nucleation of gas bubbles at defects; 2) effect of elastic interaction, inhomogeneity of material properties, and gas re-solution on gas bubble microstructures; and 3) effective properties from the output of phase-field simulations such as distribution of defects, gas bubbles, and stress fields.


* Correspondence address, Shenyang Hu, Pacific Northwest National Laboratory, Richland, WA 99352, USA. Tel.: +1 509 376 4432, Fax: +1 509 376 0418. E-mail:

References

[1] D.R.Olander, D.Wongsawaeng: J. Nucl. Mat.354 (2006) 94.10.1016/j.jnucmat.2006.03.010Suche in Google Scholar

[2] A.H.Booth: Atomic Energy of Canada Ltd., Report AECL496 (1957).Suche in Google Scholar

[3] R.M.Carroll, O.Sisman: Nucl. Appl.2 (1966) 142.Suche in Google Scholar

[4] J.R.MacEwan, W.H.Stevens: J. Nucl. Mat.11 (1964) 77.10.1016/0022-3115(64)90123-0Suche in Google Scholar

[5] R.M.Cornell, M.V.Speight, B.C.Masters: J. Nucl. Mat.30 (1969) 170.10.1016/0022-3115(69)90178-0Suche in Google Scholar

[6] R.S.Nelson: J. Nucl. Mat.25 (1968) 0227; 31 (1969) 153.Suche in Google Scholar

[7] P.Losonen: J. Nucl. Mat.304 (2002) 29.10.1016/S0022-3115(02)00856-5Suche in Google Scholar

[8] L.E.Thomas, in: S.E.Donelly, J.Evans (Eds.), Fundamental Aspects of inert Gases in Solids, Plenum (1991) p. 431.Suche in Google Scholar

[9] K.Nogita, K.Une: J. Nucl. Mat.250 (1997) 244.10.1016/S0022-3115(97)00282-1Suche in Google Scholar

[10] M.S.Veshchunov: J. Nucl. Mat.277 (2000) 67.10.1016/S0022-3115(99)00136-1Suche in Google Scholar

[11] M.Chales, C.Lemaignan: J. Nucl. Mat.188 (1992) 96.10.1016/0022-3115(92)90459-XSuche in Google Scholar

[12] I.Rest: J. Nucl. Mat.321 (2003) 305.10.1016/S0022-3115(03)00303-9Suche in Google Scholar

[13] J. H.Evans: J. Nucl. Mat.238 (1996) 175.10.1016/S0022-3115(96)00452-7Suche in Google Scholar

[14] R.M.Cornell: J. Nucl. Mat.38 (1971) 319.10.1016/0022-3115(71)90061-4Suche in Google Scholar

[15] J.A.Turnbull: J. Nucl. Mat.38 (1971) 203.10.1016/0022-3115(71)90044-4Suche in Google Scholar

[16] I.Zacharie, S.Lansiart, P.Combette, M.Trotabas, M.Coster, M.Groos: J. Nucl. Mater.255 (1998) 85.10.1016/S0022-3115(98)00039-7Suche in Google Scholar

[17] I.Zacharie, S.Lansiart, P.Combette, M.Trotabas, M.Coster, M.Groos: J. Nucl. Mater.255 (1998) 92.10.1016/S0022-3115(98)00040-3Suche in Google Scholar

[18] T.Sonoda, M.Kinoshita, I.L.F.Ray, T.Wiss, H.Thiele, D.Pellottiero, V.V.Rondinella, Hj.Matzke: Nucl. Instrum. Meth. in Phys. Res. B191 (2002) 622.10.1016/S0168-583X(02)00622-5Suche in Google Scholar

[19] C.C.Dollins: J. Nucl. Mater.59 (1975) 61.10.1016/0022-3115(76)90008-8Suche in Google Scholar

[20] M.H.Yoo: J. Nucl. Mater.68 (1977) 193.10.1016/0022-3115(77)90239-2Suche in Google Scholar

[21] M.S.Veshchunov: J. Nucl. Mater.277 (2000) 67.10.1016/S0022-3115(99)00136-1Suche in Google Scholar

[22] N.M.Ghoniem, S.Sharafat, J.M.Williams, L.K.Mansur: J. Nucl. Mater.117 (1983) 96.10.1016/0022-3115(83)90014-4Suche in Google Scholar

[23] S.Sharafat, N.M.Ghoniem: J. Nucl. Mater.283–287 (2000) 789.10.1016/S0022-3115(00)00075-1Suche in Google Scholar

[24] K.Morishita, R.Sugano: J. Nucl. Mater.353 (2006) 52.10.1016/j.jnucmat.2006.03.007Suche in Google Scholar

[25] J.Rest, S.A.Zawadzki: A Mechanistic Model for the Prediction of Xe, I, Cs, Te, Ba and Sr release from Nuclear Fuel under Normal and Severe-Accident Conditions, NUREG/CR-5840 TI92 040783, 1994.Suche in Google Scholar

[26] T.J.Heames, D.A.Williams, N.E.Bixler, A.J.Grimley, C.J.Wheatley, N.A.Johns, P.Domagala, L.W.Dickson, C.A.Alexander, I.Osborn-Lee, S.Zawadzki, J.Rest, A.Mason, R.Y.Lee: VICTORIA: a mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions, NUREG/CR-5545 (1992).10.2172/10121041Suche in Google Scholar

[27] M.S.Veshchunov, V.D.Ozrin, V.E.Shestak, V.I.Tarasov, R.Dubourg, G.Nicaise: Nucl. Eng. Des.236 (2006) 179.10.1016/j.nucengdes.2005.08.006Suche in Google Scholar

[28] M.S.Veshchunov, R.Dubourg, V.D.Ozrin, V.E.Shestak, V.I.Tarasov: J. Nucl. Mater.362 (2007) 327.10.1016/j.jnucmat.2007.01.081Suche in Google Scholar

[29] G.A.Berna, C.E.Beyer, K.L.Davis, D.D.Lanning: FRAP-CON-3: A computer code for the calculation of steady-state, thermal mechanical behavior of oxide fuel rods for high burnup, NUREG/CR-6534, volume 2 (PNNL-11513 v. 2, Pacific Northwest National Laboratory, Richland, WA) 1997.10.2172/576110Suche in Google Scholar

[30] L.L.Bonilla, A.Carpio, J.C.Neu, W.G.Wolfer: Phys. D222 (2006) 131.10.1016/j.physd.2006.07.029Suche in Google Scholar

[31] L.Q.Chen: Ann. Rev. Mater. Res.32 (2002) 113.10.1146/annurev.matsci.32.112001.132041Suche in Google Scholar

[32] A.Karma, W.J.Rappel: Phys. Rev. E57 (1998) 4323.10.1103/PhysRevE.57.4323Suche in Google Scholar

[33] Y.L.Li, S.Y.Hu, Z.K.Liu, L.Q.Chen: Appl. Phys. Lett.81 (2002) 427.10.1063/1.1492025Suche in Google Scholar

[34] Y.Wang, L.Q.Chen, A.G.Khachaturyan: Script. Metall. et Mater.25 (1991) 1387.10.1016/0956-716X(91)90419-2Suche in Google Scholar

[35] S.Y.Hu, L.Q.Chen: Acta Mater.49 (2001) 1879.10.1016/S1359-6454(01)00118-5Suche in Google Scholar

[36] Y.U.Wang, Y.M.Jin, A.M.Cuitino, A.G.Khachaturyan: Appl. Phys. Lett.78 (2001) 2324.10.1063/1.1366370Suche in Google Scholar

[37] D.Rodney, Y.Le Bouar, A.Finel: Acta Mater.51 (2003) 17.10.1016/S1359-6454(01)00379-2Suche in Google Scholar

[38] S.Y.Hu, Y.L.Li, Y.X.Zheng, L.Q.Chen: Int. J. Plasticity20 (2004) 403.10.1016/S0749-6419(03)00094-9Suche in Google Scholar

[39] J.E.Guyer, W.J.Boettinger, J.A.Warren: Phys. Rev. E69 (2004) 21603.10.1103/PhysRevE.69.021603Suche in Google Scholar

[40] S.Y.Hu, C.H.Henager, Jr.: J. Nucl. Mat.10.1016/j.jnucmat.2009.09.002(online)Suche in Google Scholar

[41] K.Morishita, R.Sugano: J. Nucl. Mater.353 (2006) 52.10.1016/j.jnucmat.2006.03.007Suche in Google Scholar

[42] R.L.Mills, D.H.Liebenberg, J.C.Bronson: Phys. Rev. B21 (1980) 5137.10.1103/PhysRevB.21.5137Suche in Google Scholar

[43] H.Trinkaus: Radiat. Effects and Defects in Solids78 (1983) 189.10.1080/00337578308207371Suche in Google Scholar

[44] J.D.Eshelby: Proc. Roy. Soc. A241 (1957) 376.10.1098/rspa.1957.0133Suche in Google Scholar

[45] R.J.Kurtz, H.L.Heinisch, F.Gao: J. Nucl. Mater.382 (2008) 134.10.1016/j.jnucmat.2008.08.020Suche in Google Scholar

[46] A.G.Khachaturyan: Theory of Structural Transformations in Solids. Wiley, New York (1983).Suche in Google Scholar

[47] J.W.Cahn: Acta Metall.9 (1961) 795.10.1016/0001-6160(61)90182-1Suche in Google Scholar

[48] L.Q.Chen, J.Shen: Comput. Phys. Comm.108 (1998) 147.10.1016/S0010-4655(97)00115-XSuche in Google Scholar

[49] S.Y.Hu, C.H.Henager, Jr., H.L.Heinisch, M.Stan, M.I.Baskes, S.Valone: J. Nucl. Mat.392 (2009) 292.10.1016/j.jnucmat.2009.03.017Suche in Google Scholar

[50] C.E.Krill, L.Q.Chen: Acta Mater.50 (2002) 3957.10.1016/S1359-6454(02)00198-2Suche in Google Scholar

Received: 2009-10-9
Accepted: 2009-12-18
Published Online: 2013-06-11
Published in Print: 2010-04-01

© 2010, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Second Symposium on Phase-Field Modelling in Materials Science
  5. Basic
  6. Phase-field modeling of surface diffusion
  7. Elastic and plastic effects on solid-state transformations: A phase field study
  8. Elastic interactions in phase-field crystal models: numerics and postprocessing
  9. Phase-field modeling of solute trapping: comparative analysis of parabolic and hyperbolic models
  10. Multi-phase field study of the equilibrium state of multi-junctions
  11. Numerical study on the evolution of stress distribution in cellular microstructures
  12. Effect of surface charges on the polarization distribution in ferroelectric nanotubes
  13. Efficient and reliable finite element techniques for phase field models
  14. Applied
  15. Phase-field simulation of microstructure formation in technical magnesium alloys
  16. Phase-field modelling of gas porosity formation during the solidification of aluminium
  17. Application of the phase-field method in predicting gas bubble microstructure evolution in nuclear fuels
  18. Simulation of reaction-diffusion phenomena occurring between Ir coating and Ni–Al alloy substrate using phase-field model
  19. Phase-field simulation of γ(A1) + γ′(L12) + γ′′(D022) three-phase microstructure formation in Ni-base superalloys
  20. Phase field modelling of austenite formation from ultrafine ferrite–carbide aggregates in Fe–C
  21. Phase field simulation of austenite grain growth in the HAZ of microalloyed linepipe steel
  22. Dual-scale phase-field simulation of grain growth upon reheating of a microalloyed line pipe steel
  23. Phase field simulation of grain growth with grain boundary segregation
  24. Notification
  25. DGM News
Heruntergeladen am 3.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110304/html?lang=de
Button zum nach oben scrollen