Home Andrade creep revisited
Article
Licensed
Unlicensed Requires Authentication

Andrade creep revisited

  • François Louchet and Paul Duval
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

Transient creep of many materials at high temperatures obeys Andrade's law, in which creep strain is proportional to the cube root of time. The present paper aims at revisiting in terms of criticality the different explanations proposed so far. In agreement with Mott's statistical theory, and using the concept of load shedding and mechanical cascades introduced in Cottrell's microscopic model, we show that Andrade creep is obtained assuming only long range back stresses and delayed obstacle overcoming, both of them involving a large number of interacting sites responsible for stress fluctuations. The time exponent is 1/3 if work hardening is linear, and larger otherwise. Andrade's creep appears as a power law approach of the linear (or χ) creep regime.


* Correspondence address, Prof. Emeritus Francois Louchet Laboratoire de Glaciologie et de Géophysique de l'Environnement, CNRS/UJFSt. Martin d'Hères, France Tel.: +33 0 476 824 252/ +33 0 682 124 734 E-mail:

Dedicated to the late Prof. Charles Crussard (1916–2008)


References

[1] E.N.daC.Andrade: Proc. R. Soc. A84 (1910) 112.Search in Google Scholar

[2] E.N.daC.Andrade: Proc. R. Soc.90 (1914) 329342.Search in Google Scholar

[3] C.Crussard, PhD thesis, University of Paris, Series A, Nr. 4058, march 14th (1963) (a) Table III, (b) Table V, (c) p. 15.Search in Google Scholar

[4] P.Duval: Ann. Geophys.32 (1976) 335350.Search in Google Scholar

[5] D.K.Dysthe, Yu.Podladchikov, F.Renard, J.Feder, B.Jamtveit: Phys. Rev. Lett.89 (2002) 246102-1-4.10.1103/PhysRevLett.89.246102Search in Google Scholar

[6] N.F.Mott: Phil. Mag.44 (1953) 742765.10.1080/14786440708521052Search in Google Scholar

[7] J.Friedel: Dislocations, Pergamon, Oxford (1964).Search in Google Scholar

[8] P.Feltham: Phil. Mag.45 (1954) 912.10.1080/14786440108520415Search in Google Scholar

[9] E.W.Hart: Acta Metall.18 (1970) 599610.10.1016/0001-6160(70)90089-1Search in Google Scholar

[10] A.H.Cottrell: Phil. Mag. Letters73 (1996) 3537.10.1080/095008396181082Search in Google Scholar

[11] R.Becker: Phys. Z.26 (1925) 919925.Search in Google Scholar

[12] F.R.N.Nabarro: Phil. Mag. Lett.75 (1997) 227233.10.1080/095008397179651Search in Google Scholar

[13] N.F.Mott, F.R.N.Nabarro: Conference on the Strength of Solids, London Physical Society, London (1948) 119.Search in Google Scholar

[14] A.H.Cottrell: Phil. Mag. A74 (1996) 10411046.10.1080/01418619608242175Search in Google Scholar

[15] A.H.Cottrell: Phil. Mag. Letters75 (1997) 227233.10.1080/095008397179552Search in Google Scholar

[16] A.H.Cottrell: Phil. Mag. Letters75 (1997) 301307.10.1080/095008397179552Search in Google Scholar

[17] A.H.Cottrell: Phil. Mag. Letters82 (2002) 6570.10.1080/09500830110104297Search in Google Scholar

[18] A.H.Cottrell: Phil. Mag.86 (2006) 38113817.10.1080/14786430500380118Search in Google Scholar

[19] A.H.Cottrell: Phil. Mag. Letters84 (2004) 685689.10.1080/09500830500036146Search in Google Scholar

[20] E.Orowan: J. West. Scot. Iron and Steel Inst.54 (1946–47) 4553.10.1093/oxfordjournals.afraf.a093484Search in Google Scholar

[21] D.C.Chrzan, M.J.Mills: Phys. Rev. Letters69 (1992) 27952798.10.1103/PhysRevLett.69.2795Search in Google Scholar

[22] T.Richeton, P.Dobron, F.Chmelik, J.Weiss, F.Louchet: Mater. Sci. Eng. A424 (2006) 190195.10.1016/j.msea.2006.03.072Search in Google Scholar

[23] D.M.Dimiduk, C.Woodward, R.LeSar, M.D.Uchic: Science312 (2006) 11881190.10.1126/science.1123889Search in Google Scholar

[24] G.S.Daehn: Acta Mater.49 (2001) 20172026.10.1016/S1359-6454(01)00089-1Search in Google Scholar

[25] M-C.Miguel, A.Vespignani, M.Zaiser, S.Zapperi: Phys. Rev. Letters89 (2002) 165501-1-4.10.1103/PhysRevLett.89.165501Search in Google Scholar

[26] M.Zaiser, P.Moretti: J. Stat. Mech. (2005) P08004.10.1088/1742-5468/2005/08/P08004Search in Google Scholar

[27] M.Ashby, P.Duval: Cold Reg. Sci. Technol.11 (1985) 285300.10.1016/0165-232X(85)90052-7Search in Google Scholar

[28] O.Castelnau, P.Duval, M.Montagnat, R.Brenner: J. Geophys. Res. 113B11203 (2008) 114.Search in Google Scholar

[29] P.Bak, C.Tang, K.Wiesenfeld: Phys. Rev. A38 (1988) 364374.10.1103/PhysRevA.38.364Search in Google Scholar

Received: 2008-9-17
Accepted: 2009-7-21
Published Online: 2013-06-11
Published in Print: 2009-10-01

© 2009, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Introduction
  4. Introduction
  5. G. Petzow: Laudation for Peter Paul Schepp
  6. Dr. Schepp's retirement after 20 years of service was celebrated
  7. Preface to Feature Articles
  8. “SURFACE and INTERFACE ENGINEERING”
  9. Feature
  10. Thermodynamics of reactions and phase transformations at interfaces and surfaces
  11. Oxidation of palladium: from single crystal surfaces towards nanoparticles
  12. On the high-temperature oxidation of MCrAlY coatings
  13. Conducting polymers for corrosion protection: a review
  14. Fundamental and applied aspects of laser surface engineering
  15. Low-temperature gaseous surface hardening of stainless steel: the current status
  16. Foreword
  17. Foreword
  18. Editorial
  19. The scientific work of Charles Crussard (1916–2008)
  20. Review
  21. Charles Crussard's early contributions: Recrystallization in situ and a Grain Boundary study with J. Friedel and B. Cullity
  22. Magnetohydrodynamics applied to materials processing
  23. Charles Crussard's contribution to sheet metal forming and participation in IDDRG
  24. Glide of dislocations in non-octahedral planes of fcc metals: a review
  25. The deformation stage II of face-centered cubic crystals: Fifty years of investigations
  26. Nucleation and growth during primary recrystallization of certain metals and alloys with a face-centered cubic structure: Formation of the cube texture
  27. Basic
  28. Andrade creep revisited
  29. Application of cluster dynamics modeling to the precipitation in aluminum alloys
  30. On the effect of pre-recovery on subsequent recrystallization
  31. The interplay between grain boundaries and disclinations in condensed matter physics
  32. Plasticity of nanocrystalline materials: a critical viewpoint
  33. Thermoelectric power applied to metallurgy: principle and recent applications
  34. Notifications
  35. People
Downloaded on 17.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110189/pdf?lang=en
Scroll to top button