Sintering Behavior of ZnO: Mn Ceramics Fabricated from Sol-Gel Derived Nanocrystalline powders
-
Z. B. Bahşi
, A. Büyükaksoy , N. C. Köseoğlu , A. Y. Oral and M. H. Aslan
Abstract
Undoped and Mn doped ZnO ceramics, sintered at 1200 °C, were produced from sol-gel derived nanocrystalline powders calcined at 750 °C. Mn doped powders showed trace amounts of spinel (ZnMn2O4) phase in addition to a dominant zincite phase, while Mn doped ceramics were comprised solely of zincite structure. X-ray mapping of the powders did not reveal any Mn concentrated areas, indicating that the ZnMn2O4 phase was homogeneously distributed with a very small grain size. The grain size of the undoped powders was around 50 nm, and there was a minor increase in the grain size when powders were doped with Mn. Undoped ceramics exhibited grain sizes distributed in the range 2 – 10 μm while Mn doped ceramics displayed slightly smaller grains. Relative densities of the undoped and Mn doped ceramics were measured as 0.695 and 0.950, respectively.
References
[1] E.Suvaci, I.Ö.Özer: J. Eur. Ceram. Soc.25 (2005) 1663. DOI:10.1016/j.jeurceramsoc.2004.05.02610.1016/j.jeurceramsoc.2004.05.026Search in Google Scholar
[2] S.Y.Chu, T.M.Yan, S.L.Chen: Ceram. Int.26 (2000) 733. DOI:10.1016/S0272-8842(00)00012-210.1016/S0272-8842(00)00012-2Search in Google Scholar
[3] R.K.Zheng, H.Liu, X.X.Zhang, V.A.L.Roy, A.B.Djurišic: Appl Phys Lett.85 (2004) 2589. DOI:10.1063/1.179536610.1063/1.1795366Search in Google Scholar
[4] C.C.Hwang, T.Y.Wu: Mat. Sci. Eng. B111 (2004) 197. DOI:10.1016/j.mseb.2004.04.02110.1016/j.mseb.2004.04.021Search in Google Scholar
[5] A.C.Mofor, A.El-Shaer, A.Bakin, H.-H.Wehmann, H.Ahlers, U.Siegner, S.Sievers, M.Albrecht, W.Schoch, N.Izyumskaya, V.Avrutin, J.Stoemenos, A.Waag: Superlattice Microstruc.39 (2006) 381. DOI:10.1016/j.spmi.2005.08.06310.1016/j.spmi.2005.08.063Search in Google Scholar
[6] T.Nagata, A.Ashida, N.Fujimura, T.Ito: J. Alloy Compd.371 (2004) 157. DOI:10.1016/j.jallcom.2003.06.01610.1016/j.jallcom.2003.06.016Search in Google Scholar
[7] S.Amirhaghi, V.Craciun, D.Craciun, J.Elder, I.W.Boyd: Microelectron. Eng.25 (1994) 321. DOI:10.1016/0167-9317(94)90032-910.1016/0167-9317(94)90032-9Search in Google Scholar
[8] A.Y.Oral, Z.B.Bahsi, M.H.Aslan: Appl. Surf. Sci.253 (2007) 4593. DOI:10.1016/j.apsusc.2006.10.01510.1016/j.apsusc.2006.10.015Search in Google Scholar
[9] E.Fortunato, P.Barquinha, A.Pimentel, A.Goncalves, A.Marques, L.Pereira, R.Martins: Thin Solid Films487 (2005) 205. DOI:10.1016/j.tsf.2005.01.06610.1016/j.tsf.2005.01.066Search in Google Scholar
[10] M.Ristic, S.Music, M.Ivanda, S.Popovic: J. Alloy Compd.397 (2005) L1. DOI:10.1016/j.jallcom.2005.01.04510.1016/j.jallcom.2005.01.045Search in Google Scholar
[11] S.Y.Chu, T.M.Yan, S.L.Chen: J. Mater. Sci. Lett.19 (2000) 349. DOI:10.1023/A:101167912421910.1023/A:1011679124219Search in Google Scholar
[12] H.Pfeiffer, K.M.Knowles: J. Eur. Ceram. Soc.24 (2004) 1199. DOI:10.1016/S0955-2219(03)00413-810.1016/S0955-2219(03)00413-8Search in Google Scholar
[13] J.Han, A.M.R.Senos, P.Q.Mantas: Mater. Chem. Phys.75 (2002) 117. DOI:10.1016/S0254-0584(02)00063-910.1016/S0254-0584(02)00063-9Search in Google Scholar
[14] Y.W.Hong, J.H.Kim: Ceram. Int.30 (2004) 1301. DOI:10.1016/j.ceramint.2003.12.02810.1016/j.ceramint.2003.12.028Search in Google Scholar
[15] M.Zunic, Z.Brankovic, S.Bernik, M.S.Goes, G.Brankovic: J. Eur. Ceram. Soc.27 (2007) 3897. DOI:10.1016/j.jeurceramsoc.2007.02.05510.1016/j.jeurceramsoc.2007.02.055Search in Google Scholar
[16] S.Jiang, H.Zhang, Y.Huang, M.Liu, R.Lin: Mat. Sci. Eng. B117 (2005) 317. DOI:10.1016/j.mseb.2004.12.04910.1016/j.mseb.2004.12.049Search in Google Scholar
[17] J.Han, P.Q.Mantas, A.M.R.Senos: J. Eur. Ceram. Soc.20 (2000) 2753. DOI:10.1016/S0955-2219(00)00220-X10.1016/S0955-2219(00)00220-XSearch in Google Scholar
[18] D.P.Joseph, G.S.Kumar, C.Venkateswaran: Mater. Lett.59 (2005) 2720. DOI:10.1016/j.matlet.2005.04.02810.1016/j.matlet.2005.04.028Search in Google Scholar
[19] J.H.Li, D.Z.Shen, J.Y.Zhang, D.X.Zhao, B.S.Li, Y.M.Lu, Y.C.Liu, X.W.Fan: J. Lumin.122–123 (2007) 352. DOI:10.1016/j.jlumin.2006.01.18210.1016/j.jlumin.2006.01.182Search in Google Scholar
[20] J.Blasco, F.Bartolome, L.M.Garcia, J.Garcia: J. Magn. Magn. Mater.316 (2007) 177. DOI:10.1016/j.jmmm.2007.02.08010.1016/j.jmmm.2007.02.080Search in Google Scholar
[21] T.K.Gupta, R.L.Coble: J. Am. Ceram. Soc.51 (1968) 521. DOI:10.1111/j.1151-2916.1968.tb15679.x10.1111/j.1151-2916.1968.tb15679.xSearch in Google Scholar
[22] H.T.Cao, Z.L.Pei, J.Gong, C.Sun, R.F.Huang, L.S.Wen: J. Solid State Chem.177 (2004) 1480. DOI:10.1016/j.jssc.2003.11.03010.1016/j.jssc.2003.11.030Search in Google Scholar
[23] W.Chen, J.Wang, M.Wang: Vacuum81 (2007) 894. DOI:10.1016/j.vacuum.2006.12.00110.1097/00005392-200111000-00037Search in Google Scholar
[24] U.N.Maiti, P.K.Ghosh, S.Nandy, K.K.Chattopadhyay: Physica B387 (2007) 103. DOI:10.1016/j.physb.2006.03.09010.1016/j.physb.2006.03.090Search in Google Scholar
© 2009, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Feature
- Nd–Fe–B permanent magnets a quarter century later: implications for patentability
- Micromagnetism of advanced hard magnetic materials
- Magnetism of nanostructured materials for advanced magnetic recording
- Basic
- A Study of the Al–Mg–B Ternary Phase Diagram
- Effects of Lanthanum on Magnetic Behavior and Hardness of Electroless Ni–Fe–P Deposits
- Interfacial Reactions between Lead-Free Solders and the Multilayer Au/Ni/SUS304 Substrate
- Melting Behavior of Sn–Bi Alloy Powder Compacts Observed Using Optical Dilatometry
- High-Strength Mg-Based Bulk Metallic Glass Composites with Remarkable Plasticity
- Determination of Liquidus Temperature in Sn–Ti–Zr Alloys by Viscosity, Electrical Conductivity and XRD Measurements
- The coupled FEM analysis of super-high angular speed polishing of diamond films
- Applied
- Comparison of Depth-Sensing Indentation at Ultramicroscopic Contacts by Single- and Multiple-Partial-Unload Cycles
- Sintering Behavior of ZnO: Mn Ceramics Fabricated from Sol-Gel Derived Nanocrystalline powders
- Suitability of Maraging Steel Weld Cladding for Repair of Die-Casting Tooling
- Enhanced properties of functionally graded Cu–Cr powder compacts
- Influence of Cr on the microstructure and mechanical properties of Ti–Si Eutectic Alloys
- Notifications
- DGM News
Articles in the same Issue
- Contents
- Contents
- Feature
- Nd–Fe–B permanent magnets a quarter century later: implications for patentability
- Micromagnetism of advanced hard magnetic materials
- Magnetism of nanostructured materials for advanced magnetic recording
- Basic
- A Study of the Al–Mg–B Ternary Phase Diagram
- Effects of Lanthanum on Magnetic Behavior and Hardness of Electroless Ni–Fe–P Deposits
- Interfacial Reactions between Lead-Free Solders and the Multilayer Au/Ni/SUS304 Substrate
- Melting Behavior of Sn–Bi Alloy Powder Compacts Observed Using Optical Dilatometry
- High-Strength Mg-Based Bulk Metallic Glass Composites with Remarkable Plasticity
- Determination of Liquidus Temperature in Sn–Ti–Zr Alloys by Viscosity, Electrical Conductivity and XRD Measurements
- The coupled FEM analysis of super-high angular speed polishing of diamond films
- Applied
- Comparison of Depth-Sensing Indentation at Ultramicroscopic Contacts by Single- and Multiple-Partial-Unload Cycles
- Sintering Behavior of ZnO: Mn Ceramics Fabricated from Sol-Gel Derived Nanocrystalline powders
- Suitability of Maraging Steel Weld Cladding for Repair of Die-Casting Tooling
- Enhanced properties of functionally graded Cu–Cr powder compacts
- Influence of Cr on the microstructure and mechanical properties of Ti–Si Eutectic Alloys
- Notifications
- DGM News