Startseite Hot extrusion of α and α/β-brass alloys
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Hot extrusion of α and α/β-brass alloys

  • Björn Reetz und Walter Reimers
Veröffentlicht/Copyright: 23. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The investigations aim at the control of the formability and the strength of hot extruded brass alloys through choosing the appropriate hot extrusion parameters. Different α-brass and α/β-brass alloys, namely CuZn10, CuZn20, CuZn37 and CuZn40Pb2, were hot extruded and subsequently investigated by means of microscopy, X-ray diffraction and mechanical testing.

The investigations show that the strength and formability of the extrudates are strongly affected by the hot extrusion parameters which determine the grain sizes and the textures of the extrudates. Additionally in the cases of CuZn37 and CuZn40Pb2, multiple phase transformations arise during the hot extrusion process and affect the resulting properties. The bcc β-phase content especially depends on the extrusion temperature, deformation degree and deformation rate.


* Correspondence address, Prof. Dr. Walter Reimers TU Berlin, Metallische Werkstoffe Sekr. BH 18, Ernst-Reuter-Platz 1 10587 Berlin Tel.: +49 30 314 22417 Fax: +49 30 314 22996 E-mail:

References

[1] K.Siegert: Metall32(1978)12431248.Suche in Google Scholar

[2] O.Vöhringer: Metallwissenschaft und Technik26(1972)11191123.Suche in Google Scholar

[3] G.Gottstein: Physikalische Grundlagen der Materialkunde, Springer-Verlag, Berlin(1998).10.1007/978-3-662-09331-3Suche in Google Scholar

[4] K.Dies: Kupfer und Kupferlegierungen in der Technik, Springer-Verlag, Berlin/Heidelberg/NewYork(1967).10.1007/978-3-642-48931-0Suche in Google Scholar

[5] J.Broichhausen, H.Feldmann: Metallwissenschaft und Technik27(1973)10691080.Suche in Google Scholar

[6] H.Schumann: Metallographie, Wiley-VCH Verlag, Berlin(2004).Suche in Google Scholar

[7] T.Wroblewski, O.Clauß, H.-A.Crostack, A.Ertel, F.Fandrick, Ch.Genzel, K.Hradil, W.Ternes, E.Woldt: Nucl. Instrum. Methods Phys. Res. A428(1999)214.10.1016/S0168-9002(99)00144-8Suche in Google Scholar

[8] V.Hauk: Structural and Residual Stress Analysis by Nondestructive Methods, Elsevier, Amsterdam(1997).Suche in Google Scholar

[9] H.J.Bunge: Mathematische Methoden der Texturanalyse, Akademie-Verlag, Berlin(1969).Suche in Google Scholar

[10] H.J.Bunge: Program System ODF-Analysis, Cuvillier Verlag, Göttingen(1993).Suche in Google Scholar

[11] E.Macherauch, P.Müller: Z. angew. Phys.13(1961)305312.Suche in Google Scholar

[12] K.Holler, B.Reetz, K.B.Müller, A.Pyzalla, W.Reimers: Mat. Sci. Forum426–432(2003)36673672.10.4028/www.scientific.net/MSF.426-432.3667Suche in Google Scholar

[13] M.Bauser, G.Sauer, K.Siegert: Strangpressen, Aluminium-Verlag, Düsseldorf(2001).Suche in Google Scholar

[14] S.MüllerK.Müller, M.Rosumek, W.Reimers: Microstructure development of differently extruded Mg alloys, Part I, ALUMINIUM, International Journal for Industry, Research and Appl.82(2006)327331.Suche in Google Scholar

[15] S.MüllerK.Müller, M.Rosumek, W.Reimers: Microstructure development of differently extruded Mg alloys, Part II, ALUMINIUM, International Journal for Industry, Research and Appl.82(2006)438442.Suche in Google Scholar

[16] G.Wassermann, J.Grewen: Texturen metallischer Werkstoffe, Springer-Verlag, Berlin(1962).10.1007/978-3-662-13128-2Suche in Google Scholar

Received: 2007-8-31
Accepted: 2008-4-24
Published Online: 2013-05-23
Published in Print: 2008-07-01

© 2008, Carl Hanser Verlag, München

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101694/html
Button zum nach oben scrollen