High temperature creep of La-monazite
-
M. Berbon
Abstract
Compressive creep of La-monazite is investigated in the temperature range 1100 °C to 1500 °C. The study includes both high-purity single-phase material and material with excess phosphorus located in amorphous grain boundary phases. The results indicate that the presence of small amounts of excess P in polycrystalline LaPO4 has a large effect on microstructural stability and creep at high temperature. Materials with La/P ratio close to unity (within ∼500 ppm) show little grain growth at temperatures up to 1400 °C and deform by creep at rates similar to those of alumina and zirconia, with stress exponent ∼1. Materials containing excess P (as little as ∼1 %) show more rapid grain growth, higher creep rates, and cavitation during creep. The results are compared with creep rates of other refractory oxides and oxide fibers. Implications for the behavior of oxide composites containing La-monazite are considered.
References
[1] J.B.Davis, D.B.Marshall, P.E.D.Morgan, R.M.Housley: J. Am. Ceram. Soc.81 (1998) 2169–2175.10.1111/j.1151-2916.1998.tb02602.xSearch in Google Scholar
[2] W.Min, K.Mityahara, K.Yoki, T.Yamaguchi, K.Daimon, Y.Hikichi, T.Matsubara, T.Ota: Mat. Res. Bull.36 (2001) 939–945.10.1016/S0025-5408(01)00555-4Search in Google Scholar
[3] Z.Zhou, Z.Yang, Q.Yuan, LiXh: Journal of Rare Earths20 (2002) 197–203.Search in Google Scholar
[4] R.Wang, W.Pan, J.Chen, M.Fang, J.Meng: Mater. Lett.57 (2002) 822–827.10.1016/S0167-577X(02)00880-7Search in Google Scholar
[5] P.E.D.Morgan, D.B.Marshall: J. Am. Ceram. Soc.78 (1995) 1553–1563.10.1111/j.1151-2916.1995.tb08851.xSearch in Google Scholar
[6] P.E.D.Morgan, D.B.Marshall, R.M.Housley: J. Mater. Sci. Eng. A195 (1995) 215–222.10.1016/0921-5093(94)06521-7Search in Google Scholar
[7] D.B.Marshall, P.E.D.Morgan, R.M.Housley, J.T.Cheung: J. Am. Ceram. Soc.81 (1998) 951–956.10.1111/j.1151-2916.1998.tb02432.xSearch in Google Scholar
[8] D.B.Marshall, J.B.Davis, P.E.D.Morgan, J.R.Porter: Key Eng. Mater.127–131 (1997) 27–36.Search in Google Scholar
[9] J.B.Davis, D.B.Marshall, P.E.D.Morgan: J. Eur. Ceram. Soc.19 (1999) 2421–2426.10.1016/S0955-2219(99)00112-0Search in Google Scholar
[10] J.B.Davis, D.B.Marshall, P.E.D.Morgan: J. Eur. Ceram. Soc.20 (2000) 583–587.10.1016/S0955-2219(99)00256-3Search in Google Scholar
[11] K.A.Keller, T.-I.Mah, E.E.Boakye, T.A.Parthasarathy: Ceram. Eng. Sci. Proc.21 (2000) 525–534.10.1002/9780470294628.ch62Search in Google Scholar
[12] T.A.Parthasarathy, E.Boakeye, M.K.Cinibulk, M.D.Perry: J. Amer. Ceram. Soc.82 (1999) 3575–3583.10.1111/j.1151-2916.1999.tb02281.xSearch in Google Scholar
[13] S.M.Johnson, Y.Blum, C.Kanazawa, H.-J.Wu, J.R.Porter, P.E.D.Morgan, D.B.Marshall, D.Wilson: Key Eng. Mater.127–131 (1997) 231–238.Search in Google Scholar
[14] S.M.Johnson, Y.Blum, C.H.Kanazawa: Key. Eng. Mater.164–165 (1999) 85–90.Search in Google Scholar
[15] K.A.Keller, T.Mah, T.A.Parthasarathy, E.E.Boakye, M.Cinibulk: Ceram. Eng. Sci. Proc.22 (2001) 667–675.10.1002/9780470294680.ch77Search in Google Scholar
[16] Y.Hikichi, T.Nomura: J. Am. Cer. Soc.70 (1987) C252–C 253.10.1111/j.1151-2916.1987.tb04890.xSearch in Google Scholar
[17] J.B.Davis, R.S.Hay, D.B.Marshall, P.E.D.Morgan, A.Sayir: J. Am. Ceram. Soc.86 (2003) 305–316.10.1111/j.1151-2916.2003.tb00016.xSearch in Google Scholar
[18] D.B.Marshall, P.E.D.Morgan, R.M.Housley: J. Am. Ceram. Soc.80 (1997) 1677–1683.10.1111/j.1151-2916.1997.tb03038.xSearch in Google Scholar
[19] D.-H.Kuo, W.M.Kriven: J. Am. Ceram. Soc.78 (1995) 3121–3124.10.1111/j.1151-2916.1995.tb09094.xSearch in Google Scholar
[20] M.G.Cain, R.L.Cain, A.Tye, P.Rian, M.H.Lewis, J.Gent: Key Eng. Mat.127–131 (1997) 37–49.Search in Google Scholar
[21] K.A.Keller, T.-I.Mah, T.A.Parthasarathy, E.E.Boakye, P.Mogilevsky, M.K.Cinibulk: J. Am. Ceram. Soc. 2002, 86 (2003) 325–332.10.1111/j.1151-2916.2003.tb00018.xSearch in Google Scholar
[22] R.S.Hay, D.B.Marshall: Acta Mater.51 (2003) 5235–5254.10.1016/S1359-6454(03)00305-7Search in Google Scholar
[23] R.S.Hay: Ceram. Eng. Sci. Proc.21 (2000) 203–218.10.1002/9780470294635.ch26Search in Google Scholar
[24] R.S.Hay: Acta Mater.51 (2003) 5255–5262.10.1016/S1359-6454(03)00304-5Search in Google Scholar
[25] R.S.Hay: J. Am. Ceram. Soc.87 (2004) 1149–1152.10.1111/j.1551-2916.2004.01149.xSearch in Google Scholar
[26] R.S.Hay: Philos. Mag.85 (2005) 373–386.10.1080/14786430412331315761Search in Google Scholar
[27] F.G.Karioris, K.A.Gowda, L.Cartz: Radiation Effects Letters58 (1981) 1–3.10.1080/01422448108226520Search in Google Scholar
[28] T.C.Ehlert, K.A.Gowda, F.G.Karioris, L.Cartz: Radiation Effects70 (1983) 173–181.10.1080/00337578308219214Search in Google Scholar
[29] A.Meldrum, L.A.Boatner, R.C.Ewing: Min. Mag.64 (2000) 185–194.10.1180/002646100549283Search in Google Scholar
[30] L.A.Boatner, B.C.Sales, in: W.Lutze, R.C.Ewing (Eds.), Radioactive Waste Forms for the Future. North-Holland, New York Ch. 8 (1988).Search in Google Scholar
[31] A.Meldrum, L.A.Boatner, R.C.Ewing: J. Mater. Res.12 (1997) 1816–1827.10.1557/JMR.1997.0250Search in Google Scholar
[32] P.E.D.Morgan, D.B.Marshall, J.B.Davis, R.M.Housley, in: A.Pechenik, R.K.Kalia, P.Vashishta (Eds.), Computer Aided Design of High-Temperature Materials, Oxford University Press, New York: (1999) 229–243.Search in Google Scholar
[33] J.B.Davis, D.B.Marshall, K.S.Oka, R.M.Housley, P.E.D.Morgan: Composites Part A30 (1999) 483–488.10.1016/S1359-835X(98)00138-9Search in Google Scholar
[34] J.B.Davis, D.B.Marshall, P.E.D.Morgan, K.S.Oka, A.O.Barney, P.A.Hogenson: American Institute of Aeronautics and Astronautics, AIAA-2000-5087.Search in Google Scholar
[35] E.Boakye, R.S.Hay, M.D.Petry: J. Amer. Cer. Soc.82 (1999) 2321–2331.10.1111/j.1151-2916.1999.tb02086.xSearch in Google Scholar
[36] R.S.Hay, E.Boakye, M.D.Petry: J. Eur. Ceram. Soc.20 (2000) 589–597.10.1016/S0955-2219(99)00257-5Search in Google Scholar
[37] E.Boakye, M.D.Petry, R.S.Hay, L.M.Douglas: Ceram. Eng. Sci. Proc.21 (2000) 229–236.10.1002/9780470294635.ch28Search in Google Scholar
[38] H.D.Park, E.R.Kreidler: J. Am. Ceram. Soc.67 (1984) 23–26.10.1111/j.1151-2916.1984.tb19140.xSearch in Google Scholar
[39] J.Kropiwnicka, T.Znamierowska: Pol. J. Chem.62 (1988) 587–594.Search in Google Scholar
[40] J.B.Davis: Unpublished work.Search in Google Scholar
[41] J.Seidensticker, M.J.Mayo: Scripta Mater.38 (1998) 1091.Search in Google Scholar
[42] R.S.Hay, E.Boakeye, M.D.Petry, Y.Berta, K.Von Lehmden, J.Welch: Ceram. Eng. Sci. Proc.20 (1999) 165–172.10.1002/9780470294567.ch20Search in Google Scholar
[43] J.Cho, C.Wang, H.M.Chan, M.P.Harmer, J.M.Rickman: J. Mater. Res.16 (2001) 425–429.10.1557/JMR.2001.0064Search in Google Scholar
[44] T.A.Parthasarathy, T.Mah, L.E.Matson: J. Am. Ceram. Soc.76 (1993) 29–32.10.1111/j.1151-2916.1993.tb03685.xSearch in Google Scholar
[45] M.Jimenez-Melendo, A.Dominguez-Rodriguez, A.Bravo-Leon: J. Amer. Ceram. Soc.81 (1998) 2761–2776.10.1111/j.1151-2916.1998.tb02695.xSearch in Google Scholar
[46] D.M.Wilson, Viser: Ceram. Eng. Sci. Proc.21 (2000) 363–373.10.1002/9780470294635.ch44Search in Google Scholar
[47] D.M.Wilson, S.L.Lieder, D.C.Lueneburg: Ceram. Eng. Sci. Proc.16 (1995) 1005.Search in Google Scholar
[48] D.M.Wilson, D.C.Lueneburg, S.L.Lieder: Ceram. Eng. Sci. Proc.14 (1993) 609–621.10.1002/9780470314180.ch87Search in Google Scholar
[49] M.B.Ruggles-Wrenn, S.S.Musil, S.Mall, K.A.Keller: Comp. Sci. Tech.66 (2006) 2089–2099.10.1016/j.compscitech.2005.12.026Search in Google Scholar
[50] P.R.Jackson, M.B.Ruggles-Wrenn, S.S.Baekb, K.A.Keller: Mater. Sci. Eng. A454–455 (2007) 590–601.10.1016/j.msea.2006.11.131Search in Google Scholar
© 2007, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Tony Evans 65 years
- Basic
- Do plastic zones form at crack tips in silicate glasses?
- Phase stability of thermal barrier oxides: A comparative study of Y and Yb additions
- Internal stresses and phase stability in multiphase environmental barrier coatings
- Mechanisms of elastodynamic erosion of electron-beam thermal barrier coatings
- Directed assembly of fluidic networks by buckle delamination of films on patterned substrates
- In-situ studies of the TGO growth stresses and the martensitic transformation in the B2 phase in commercial Pt-modified NiAl and NiCoCrAlY bond coat alloys
- Adhesion of the γ-Ni(Al)/α-Al2O3 interface: a first-principles assessment
- Crystal chemistry of interfaces formed between two different non-metallic, inorganic structures
- Applied
- Materials for violin bows
- Wetting of metals and glasses on Mo
- High temperature creep of La-monazite
- Sandwich panels for blast protection in water: simulations
- Thermal-elastic response of marble polycrystals: Influence of grain orientation configuration
- The compressive response of carbon fiber composite pyramidal truss sandwich cores
- Reactions in the sintering of MgAl2O4 spinel doped with LiF
- Crack-tip strain fields in collagen biomaterials for skin tissue engineering
- DGM News
- Personal
Articles in the same Issue
- Contents
- Contents
- Editorial
- Tony Evans 65 years
- Basic
- Do plastic zones form at crack tips in silicate glasses?
- Phase stability of thermal barrier oxides: A comparative study of Y and Yb additions
- Internal stresses and phase stability in multiphase environmental barrier coatings
- Mechanisms of elastodynamic erosion of electron-beam thermal barrier coatings
- Directed assembly of fluidic networks by buckle delamination of films on patterned substrates
- In-situ studies of the TGO growth stresses and the martensitic transformation in the B2 phase in commercial Pt-modified NiAl and NiCoCrAlY bond coat alloys
- Adhesion of the γ-Ni(Al)/α-Al2O3 interface: a first-principles assessment
- Crystal chemistry of interfaces formed between two different non-metallic, inorganic structures
- Applied
- Materials for violin bows
- Wetting of metals and glasses on Mo
- High temperature creep of La-monazite
- Sandwich panels for blast protection in water: simulations
- Thermal-elastic response of marble polycrystals: Influence of grain orientation configuration
- The compressive response of carbon fiber composite pyramidal truss sandwich cores
- Reactions in the sintering of MgAl2O4 spinel doped with LiF
- Crack-tip strain fields in collagen biomaterials for skin tissue engineering
- DGM News
- Personal