Home The microstructure of ball milled nanocrystalline vanadium; variation of the crystal imperfection and the lattice parameter
Article
Licensed
Unlicensed Requires Authentication

The microstructure of ball milled nanocrystalline vanadium; variation of the crystal imperfection and the lattice parameter

  • Peter Lamparter and Eric J. Mittemeijer
Published/Copyright: May 23, 2013
Become an author with De Gruyter Brill

Abstract

Nanocrystalline vanadium powders have been produced by ball milling in a planetary mill. The morphology of the powder particles has been investigated by scanning electron microscopy. Crystallite size (size of coherently diffracting domains) and lattice-strain variation (microstrain) have been determined from the analysis of the X-ray diffraction-line broadening using the established integral breadth Williamson – Hall and Fourier Warren – Averbach methods. Results obtained from transmission electron microscopy analysis have been compared with the X-ray diffraction results. Ball milling causes an increase in the particle size and a decrease in the grain (crystallite) size with increasing milling time, a lattice-strain variation, due to deformation-induced dislocations, that increases with milling time and deformation-induced stacking faults of density increasing with milling time. The lattice parameter of the vanadium powders, as deduced from the diffraction-peak positions, decreases upon milling linearly with the inverse of the grain size, which has been attributed to grain (crystallite)-boundary stress.


* Correspondence address, Dr. Peter Lamparter, Max Planck Institute for Metals Research, Heisenbergstraße 3, D-70569 Stuttgart, Germany, Tel.: +49 711 698 3373, Fax: +49 722 698 3312, E-mail:

References

[1] H.Gleiter: Prog. Mater. Sci.33 (1989) 223.10.1016/0079-6425(89)90001-7Search in Google Scholar

[2] C.Suryanarayana, C.C.Koch: Hyperfine Interactions130 (2000) 5.10.1023/A:1011026900989Search in Google Scholar

[3] R.Birringer, H.Gleiter, in: R.W.Cahn (Ed.), Encyclopedia of Materials Science and Engineering, Suppl., Vol. 1, Pergamon Press, Oxford (1988) 339.Search in Google Scholar

[4] E.Hellstern, H.J.Fecht, W.L.Johnson: J. Appl. Phys.65 (1989) 305.10.1063/1.342541Search in Google Scholar

[5] H.J.Fecht, E.Hellstern, Z.Fu, W.L.Johnson: Met. Trans. A21 (1990) 2333.10.1007/BF02646980Search in Google Scholar

[6] M.Jung: Dynamik und Löslichkeit von Wasserstoff in nanokristallinen Metallen. Ph.D. Thesis, Technische Universität Darmstadt, Germany (2002).Search in Google Scholar

[7] Q.Wei, T.Jiao, K.T.Ramesh, E.Ma: Scripta Mater.50 (2004) 359.10.1016/j.scriptamat.2003.10.010Search in Google Scholar

[8] I.Lucks, P.Lamparter, E.J.Mittemeijer: J. Appl. Cryst.37 (2004) 300.10.1107/S0021889804003140Search in Google Scholar

[9] I.Lucks, P.Lamparter, E.J.Mittemeijer: Acta Mater.49 (2001) 2419.10.1016/S1359-6454(01)00154-9Search in Google Scholar

[10] I.Lucks, P.Lamparter, E.J.Mittemeijer: Mater. Sci. Forum378–381 (2001) 451.Search in Google Scholar

[11] I.Lucks, P.Lamparter, J.Xu, E.J.Mittemeijer: Mater. Sci. Forum443–444 (2004) 119.Search in Google Scholar

[12] B.E.Warren: X-Ray Diffraction, Addison Wesley, Reading, MA, USA (1969).Search in Google Scholar

[13] J.I.Langford, D.Louër: Rep. Prog. Phys.59 (1996) 131.10.1088/0034-4885/59/2/002Search in Google Scholar

[14] R.L.Snyder, J.Fiala, J.Bunge (Eds.): Defect and Microstructure Analysis by Diffraction, University Press, Oxford (1999).Search in Google Scholar

[15] E.J.Mittemeijer, P.Scardi (Eds.): Diffraction Analysis of the Microstructure of Materials, Springer Series in Materials Science Vol. 68, Springer-Verlag, Berlin, Heidelberg New York (2004).10.1007/978-3-662-06723-9Search in Google Scholar

[16] G.K.Williamson, W.H.Hall: Acta Metall.1 (1953) 22.10.1016/0001-6160(53)90006-6Search in Google Scholar

[17] B.E.Warren, B.L.Averbach: J. Appl. Phys.21 (1950) 595.10.1063/1.1699713Search in Google Scholar

[18] B.E.Warren, B.L.Averbach: J. Appl. Phys.23 (1952) 497.10.1063/1.1702234Search in Google Scholar

[19] R.Delhez, Th.H.de Keijser, E.J.Mittemeijer: Fresenius Z. Anal. Chem.312 (1982) 1.10.1007/BF00482725Search in Google Scholar

[20] J.G.M.van Berkum, A.C.Vermeulen, R.Delhez, Th.H.de Keijser, E.J.Mittemeijer: Acta Cryst. A52 (1996) 730.10.1107/S0108767396005727Search in Google Scholar

[21] A.Le Bail, in: R.L.Snyder, J.Fiala, J.Bunge (Eds.), Defect and Microstructure Analysis by Diffraction, University Press, Oxford (1999) 535.Search in Google Scholar

[22] P.Scardi, M.Leoni: J. Appl. Cryst.32 (1999) 671.10.1107/S002188989900374XSearch in Google Scholar

[23] Philips Electronics N. V. The Netherlands, PHILIPS ProFit version 1.0c (1996).Search in Google Scholar

[24] G.W.Brindley: Philos. Mag.36 (1945) 347.10.1080/14786444508520918Search in Google Scholar

[25] P.Suortti: J. Appl. Cryst.5 (1972) 325.10.1107/S0021889872009707Search in Google Scholar

[26] C.J.Sparks, K.Kumar, E.D.Specht, P.Zschack, G.E.Ice: Adv. X-ray Anal.35 (1991) 57.Search in Google Scholar

[27] W.Pitschke, N.Mattern, H.Hermann: Powder Diffraction8 (1993) 223.10.1017/S0885715600019412Search in Google Scholar

[28] A.R.Stokes, A.J.C.Wilson: Proc. Phys. Soc. Lond.56 (1944) 174.10.1088/0959-5309/56/3/303Search in Google Scholar

[29] A.C.Vermeulen, R.Delhez, Th.H.de Keijser, E.J.Mittemeijer: J. Appl. Phys.77 (1995) 5026.10.1063/1.359312Search in Google Scholar

[30] T.Unga´r, A.Borbe´ly: Appl. Phys. Lett.69 (1996) 3173.Search in Google Scholar

[31] T.Unga´r, S.Ott, P.G.Sanders, A.Borbe´ly, J.R.Weertmann: Acta Mater.46 (1998) 3693.Search in Google Scholar

[32] T.C.Bor, M.C.Huisman, J.-D.Kamminga, R.Delhez, E.J.Mittemeijer: Philos. Mag.83 (2003) 3327.10.1080/14786430310001605029Search in Google Scholar

[33] C.C.Koch: Nanostruk. Mater.2 (1993) 109.10.1016/0965-9773(93)90016-5Search in Google Scholar

[34] W.M.Kuschke, R.-M.Keller, P.Grahle, R.Mason, E.Arzt: Z. Metallkd.86 (1995) 804.Search in Google Scholar

[35] I.Börner, J.Eckert: Mat. Sci. Eng. A226 (1997) 541.Search in Google Scholar

[36] H.H.Tian, M.Atzmon: Acta Met.47 (1999) 1255.10.1016/S1359-6454(99)00002-6Search in Google Scholar

[37] W.A.Rachinger: J. Sci. Instrum.25 (1948) 254.10.1088/0950-7671/25/7/125Search in Google Scholar

[38] R.Delhez, E.J.Mittemeijer: J. Appl. Cryst.8 (1975) 609.10.1107/S0021889875011466Search in Google Scholar

[39] A.R.Stokes: Proc. Roy. Soc. A61 (1948) 382.10.1088/0959-5309/61/4/311Search in Google Scholar

[40] J.G.Mvan Berkum, A.C.Vermeulen, R.Delhez, Th.H.de Keijser, E.J.Mittemeijer: J. Appl. Cryst.27 (1994) 345.10.1107/S0021889893010568Search in Google Scholar

[41] R.A.Young, R.J.Gerdes, A.J.C.Wilson: Acta Cryst.22 (1967) 155.10.1107/S0365110X67000271Search in Google Scholar

[42] H.J.Fecht, E.Hellstern, Z.Fu, W.L.Johnson: Adv. Powder Metall.2 (1989) 111.Search in Google Scholar

[43] J.Eckert, J.C.Holzer, C.E.Krill, W.L.Johnson: Mater. Sci. For.88–90 (1992) 505.Search in Google Scholar

[44] A´.Re´ve´sz: J. Mater. Sci.40 (2005) 1643.10.1007/s10853-005-0664-1Search in Google Scholar

[45] C.Krill, R.Birringer: Philos. Mag. A77 (1998) 621.10.1080/01418619808224072Search in Google Scholar

[46] C.Krill, Haberkorn, R. Birringer: Handbook of Nanostructured Materials, Vol II, Academic Press (2000).Search in Google Scholar

[47] G.K.Williamson, R.E.Smallman: Philos. Mag.1 (1956) 34.10.1080/14786435608238074Search in Google Scholar

[48] R.E.Smallman, K.H.Westmacott: Philos. Mag.2 (1957) 669.10.1080/14786435708242709Search in Google Scholar

[49] T.Unga´r, in: R.L.Snyder, J.Fiala, H.J.Bunge (Eds.), Defect and Microstructure Analysis by Diffraction, Oxford University Press, Oxford (1999) 165.Search in Google Scholar

[50] Y.H.Zhao, H.W.Sheng, K.Lu: Acta. Mater.49 (2001) 365.10.1016/S1359-6454(00)00310-4Search in Google Scholar

[51] Y.H.Zhao, K.Lu, K.Zhang: Phys. Rev. B66 (2002) 085404 1.10.1103/PhysRevB.66.085404Search in Google Scholar

[52] NIST: Certificate SRM 640c, (2000).Search in Google Scholar

[53] A.J.C.Wilson: Elements of X-Ray Crystallography, Addison-Wesley, Reading, MA, USA (1970).Search in Google Scholar

[54] Natl. Bur. Stand. (U.S) Monogr.2558 (1971).Search in Google Scholar

[55] C.N.J.Wagner, in: J.B.Cohen, J.E.Hilliard (Eds.), Local Atomic Arrangements Studied by X-ray Diffraction, Gordon and Breach, New York (1966) 217.Search in Google Scholar

[56] C.R.Berry: Phys. Rev.88 (1952) 596.10.1103/PhysRev.88.596Search in Google Scholar

[57] H.J.Wasserman, J.S.Vermaak: Surf. Sci.22 (1970) 164.10.1016/0039-6028(70)90031-2Search in Google Scholar

[58] J.S.Vermaak, D.Kuhlmann-Wilsdorf: J. Phys. Chem.72 (1968) 4150.10.1021/j100858a034Search in Google Scholar

[59] C.Solliard, M.Flueli: Surf. Sci.156 (1985) 487.10.1016/0039-6028(85)90610-7Search in Google Scholar

[60] S.H.Tolbert, A.P.Alivisatos: Annu. Rev. Phys. Chem.46 (1995) 595.10.1146/annurev.pc.46.100195.003115Search in Google Scholar PubMed

[61] R.Lamber, S.Wetjen, N.I.Jaeger: Phys. Rev. B51 (1994) 10968.10.1103/PhysRevB.51.10968Search in Google Scholar

[62] K.Reimann, R.Würschum: J. Appl. Phys.81 (1997) 7186.10.1063/1.365307Search in Google Scholar

[63] C.Herring, in: R.Gomer, C.S.Smith (Eds.), Structure and Properties of Solid Surfaces, University of Chicago Press, Chicago, ILL, USA (1953) 5.Search in Google Scholar

[64] J.S.Vermaak, C.W.Mays, D.Kuhlmann-Wilsdorf: Surf. Sci.12 (1968) 128.10.1016/0039-6028(68)90118-0Search in Google Scholar

[65] C.W.Mays, J.S.Vermaak, D.Kuhlmann-Wilsdorf: Surf. Sci.12 (1968) 134.10.1016/0039-6028(68)90119-2Search in Google Scholar

[66] R.Defay, I.Prigogine, A.Bellemans: Surface Tension and Absorption, Longmans, London (1966) 1.Search in Google Scholar

[67] J.-P.Borel, A.Cha∘telain: Surf. Sci.156 (1985) 572.10.1016/0039-6028(85)90226-2Search in Google Scholar

[68] S.P.Timoshenko, J.N.Goodier: Theory of Elasticity, McGraw-Hill, New York (1987).Search in Google Scholar

[69] W.F.Gale, T.C.Totemeier (Eds.): Smithells Metals Reference Book, 8th ed., Elsevier Butterworth-Heinemann, Oxford (2204) 153.Search in Google Scholar

Received: 2006-6-16
Accepted: 2007-3-2
Published Online: 2013-05-23
Published in Print: 2007-06-01

© 2007, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Basic
  4. The effect of bismuth segregation on the faceting of Σ3 and Σ9 coincidence boundaries in copper bicrystals
  5. Viscosity measurement of liquid ternary Cu–Ni–Fe alloys by an oscillating cup viscometer and comparison with models
  6. Isothermal oxidation behavior of a precipitation-hardened Pt-base alloy with additions of Al, Cr and Ni
  7. Bismuth activity measurements and thermodynamic re-optimization of the Ni–Bi System
  8. Modelling of the β → α + β transformation in a metastable β Ti alloy based on the growth kinetics and the morphology of the α plates
  9. The microstructure of ball milled nanocrystalline vanadium; variation of the crystal imperfection and the lattice parameter
  10. Study of interfacial reactions between Sn–Ag–Cu alloys and Au substrate
  11. Applied
  12. On the precipitation processes in commercial QE22 magnesium alloy
  13. Cyclic deformation behavior of deep rolled as-quenched aluminium alloy AA6110 at elevated temperatures
  14. Effect of Ho additions on the microstructure and mechanical properties of Nb-22Ti-16Si-7Cr-3Al-3Ta-2Hf alloys
  15. Improved mechanical properties of the high pressure die casting alloy AlSi9Cu3(Fe)(Zn) as a result of the combination of natural and artificial ageing
  16. Effect of quenching temperature on the microstructure and mechanical properties of Fe–B–Ti alloy
  17. A kinetic study of nickel coating on boron nitride micro-particles
  18. Thermal diffusivity measurements of some industrially important alloys by a laser flash method
  19. Notifications
  20. DGM News
Downloaded on 16.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.101492/html?lang=en
Scroll to top button