Home Nanoindentation behavior and mechanical properties measurement of polymeric materials
Article
Licensed
Unlicensed Requires Authentication

Nanoindentation behavior and mechanical properties measurement of polymeric materials

  • Robert F. Cook and Michelle L. Oyen
Published/Copyright: May 23, 2013
Become an author with De Gruyter Brill

Abstract

During sharp contacts, polymeric materials can exhibit elastic (reversible), plastic (instantaneous irreversible), and viscous (time-dependent irreversible) deformation. Due to viscous effects commonly observed in experiments conducted on polymeric materials, the analytical methods developed for instrumented indentation testing (“nanoindentation”) of elastic-plastic materials cannot be used to determine polymer mechanical properties. Here, a viscous-elastic-plastic sharp indentation model is reframed into normalized coordinates. The updated scheme allows the mechanical properties of polymeric materials to be determined simply from single- or multiple-cycle nanoindentation tests; output parameters are the relative resistance to plastic vs elastic deformation during indentation and the relative time scales for viscous flow during the contact event. The scheme allows the indentation behavior of all materials to be placed on a single map.


* Correspondence address, Robert F. Cook, Ceramics Division, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8520, Gaithersburg, MD 20899, USA, Tel.: +1 301 975 3207Fax: +1 301 975 5334 E-mail:

References

[1] D.Tabor: The Hardness of Metals, Oxford University Press (at the Clarendon Press), London (1951).Search in Google Scholar

[2] ASTM D2240-0, Standard Test Method for Rubber Property–Durometer Hardness (Types A, B, C, D, DO, E, M, O, OO, OOO, OOO-S, and R).Search in Google Scholar

[3] B.R.Lawn, V.R.Howes: J. Mater. Sci.16 (1981) 2745.10.1007/BF02402837Search in Google Scholar

[4] W.C.Oliver, G.M.Pharr: J. Mater. Res.7 (1992) 1564.10.1557/JMR.1992.1564Search in Google Scholar

[5] J.Thurn, R.F.Cook: J. Mater. Res.19 (2004) 124.10.1557/jmr.2004.19.1.124Search in Google Scholar

[6] M.E.Broz, R.F.Cook, D.L.Whitney: Am. Mineral.91 (2006) 135.10.2138/am.2006.1844Search in Google Scholar

[7] D.J.Morris, R.F.Cook: J. Am. Ceram. Soc.87 (2004) 1494.10.1111/j.1551-2916.2004.01494.xSearch in Google Scholar

[8] R.F.Cook, E.G.Liniger: J. Electrochem. Soc.146 (1999) 4439.10.1149/1.1392656Search in Google Scholar

[9] Y.Toivola, J.Thurn, R.F.Cook: J. Electrochem. Soc.149 (2002) F9.10.1149/1.1447225Search in Google Scholar

[10] B.J.Briscoe, L.Fiori, E.Pelillo: J. Phys. D: Appl. Phys.31 (1998) 2395.10.1088/0022-3727/31/19/006Search in Google Scholar

[11] M.L.Oyen, R.F.Cook: J. Mater. Res.18 (2003) 139.10.1557/JMR.2003.0020Search in Google Scholar

[12] H.Hertz: Miscellaneous Papers (translated by Jones, D.E., Schott, G.A.), Macmillan and Co., London (1896), 178180.Search in Google Scholar

[13] I.N.Sneddon: Int. J. Engng. Sci.3 (1965) 47.10.1016/0020-7225(65)90019-4Search in Google Scholar

[14] J.S.Field, M.V.Swain: J. Mater. Res.8 (1993) 297.10.1557/JMR.1993.0297Search in Google Scholar

[15] E.H.Lee, J.R.M.Radok: J. Appl. Mech.27 (1960) 438.10.1115/1.3644020Search in Google Scholar

[16] H.Lu, B.Wang, J.Ma, G.Huang, H.Viswanathan: Mech. Time-dep. Mater.7 (2003) 189.10.1023/B:MTDM.0000007217.07156.9bSearch in Google Scholar

[17] M.L.Oyen, R.F.Cook, N.R.Moody, J.A.Emerson: J. Mater. Res.19 (2004) 2487.10.1557/JMR.2004.0308Search in Google Scholar

[18] F.Mammeri, E.Le Bourhis, L.Rozes, C.Sanchez, A.Huignard, D.Lefevre: J. Non-Crystall. Solids 345 &346 (2004) 610.10.1016/j.jnoncrysol.2004.08.107Search in Google Scholar

[19] M.L.Oyen, C.-C.Ko: J. Mater. Sci. Mater. Med. (2006), in press.Search in Google Scholar

[20] W.N.Findley, J.Lai, K.Onaran: Creep and Relaxation of Nonlinear Viscoelastic Materials, Dover, New York (1989).Search in Google Scholar

[21] M.L.Oyen: Philos. Mag.86 (2006) 5625.10.1080/14786430600740666Search in Google Scholar

[22] M.Sakai: J. Mater. Res.14 (1999) 3630.10.1557/JMR.1999.0490Search in Google Scholar

[23] J.J.Vlassak, W.D.Nix: Philos. Mag. A67 (1993) 1045.10.1080/01418619308224756Search in Google Scholar

[24] A.E.H.Love: Treatise on the Mathematical Theory of Elasticity, 3rd Edition, Dover, New York (1944).Search in Google Scholar

[25] C.Macosko: Rheology, Wiley-VCH, New York (1994).Search in Google Scholar

[26] Y.Toivola, A.Stein, R.F.Cook: J. Mater. Res.19 (2004) 260.10.1557/jmr.2004.19.1.260Search in Google Scholar

[27] M.F.Ashby, A.G.Evans, N.A.Fleck, L.J.Gibson, J.W.Hutchinson, H.N.G.Wadley: Metal Foams: A Design Guide, Butterworth-Heinemann (Elsevier), Burlington, MA (2000).Search in Google Scholar

[28] M.F.Doerner, W.D.Nix: J. Mater. Res.1 (1986) 601.10.1557/JMR.1986.0601Search in Google Scholar

[29] M.Sakai, S.Shimizu: J. Non-Crystall. Solids282 (2001) 236.10.1016/S0022-3093(01)00316-7Search in Google Scholar

[30] D.J.Morris, S.B.Myers, R.F.Cook: J. Mater. Res.19 (2004) 165.10.1557/jmr.2004.19.1.165Search in Google Scholar

[31] M.L.Oyen: J. Mater. Res.20 (2005) 2094.10.1557/JMR.2005.0259Search in Google Scholar

[32] J.M.Mattice, A.G.Lau, M.L.Oyen, R.W.Kent: J. Mater. Res.21 (2006) 2003.10.1557/jmr.2006.0243Search in Google Scholar

[33] G.T.Mase, G.E.Mase: Continuum Mechanics for Engineers, 2nd Ed., CRC, Boca Raton, FL (1999).10.1201/9781439832578Search in Google Scholar

[34] C.A.Tweedie, K.J.Van Vliet: J. Mater. Res.21 (2006) 1576.10.1557/jmr.2006.0197Search in Google Scholar

Received: 2006-10-11
Accepted: 2007-1-14
Published Online: 2013-05-23
Published in Print: 2007-05-01

© 2007, Carl Hanser Verlag, München

Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.101480/html
Scroll to top button