Nanoindentation behavior and mechanical properties measurement of polymeric materials
-
Robert F. Cook
Abstract
During sharp contacts, polymeric materials can exhibit elastic (reversible), plastic (instantaneous irreversible), and viscous (time-dependent irreversible) deformation. Due to viscous effects commonly observed in experiments conducted on polymeric materials, the analytical methods developed for instrumented indentation testing (“nanoindentation”) of elastic-plastic materials cannot be used to determine polymer mechanical properties. Here, a viscous-elastic-plastic sharp indentation model is reframed into normalized coordinates. The updated scheme allows the mechanical properties of polymeric materials to be determined simply from single- or multiple-cycle nanoindentation tests; output parameters are the relative resistance to plastic vs elastic deformation during indentation and the relative time scales for viscous flow during the contact event. The scheme allows the indentation behavior of all materials to be placed on a single map.
References
[1] D.Tabor: The Hardness of Metals, Oxford University Press (at the Clarendon Press), London (1951).Search in Google Scholar
[2] ASTM D2240-0, Standard Test Method for Rubber Property–Durometer Hardness (Types A, B, C, D, DO, E, M, O, OO, OOO, OOO-S, and R).Search in Google Scholar
[3] B.R.Lawn, V.R.Howes: J. Mater. Sci.16 (1981) 2745.10.1007/BF02402837Search in Google Scholar
[4] W.C.Oliver, G.M.Pharr: J. Mater. Res.7 (1992) 1564.10.1557/JMR.1992.1564Search in Google Scholar
[5] J.Thurn, R.F.Cook: J. Mater. Res.19 (2004) 124.10.1557/jmr.2004.19.1.124Search in Google Scholar
[6] M.E.Broz, R.F.Cook, D.L.Whitney: Am. Mineral.91 (2006) 135.10.2138/am.2006.1844Search in Google Scholar
[7] D.J.Morris, R.F.Cook: J. Am. Ceram. Soc.87 (2004) 1494.10.1111/j.1551-2916.2004.01494.xSearch in Google Scholar
[8] R.F.Cook, E.G.Liniger: J. Electrochem. Soc.146 (1999) 4439.10.1149/1.1392656Search in Google Scholar
[9] Y.Toivola, J.Thurn, R.F.Cook: J. Electrochem. Soc.149 (2002) F9.10.1149/1.1447225Search in Google Scholar
[10] B.J.Briscoe, L.Fiori, E.Pelillo: J. Phys. D: Appl. Phys.31 (1998) 2395.10.1088/0022-3727/31/19/006Search in Google Scholar
[11] M.L.Oyen, R.F.Cook: J. Mater. Res.18 (2003) 139.10.1557/JMR.2003.0020Search in Google Scholar
[12] H.Hertz: Miscellaneous Papers (translated by Jones, D.E., Schott, G.A.), Macmillan and Co., London (1896), 178–180.Search in Google Scholar
[13] I.N.Sneddon: Int. J. Engng. Sci.3 (1965) 47.10.1016/0020-7225(65)90019-4Search in Google Scholar
[14] J.S.Field, M.V.Swain: J. Mater. Res.8 (1993) 297.10.1557/JMR.1993.0297Search in Google Scholar
[15] E.H.Lee, J.R.M.Radok: J. Appl. Mech.27 (1960) 438.10.1115/1.3644020Search in Google Scholar
[16] H.Lu, B.Wang, J.Ma, G.Huang, H.Viswanathan: Mech. Time-dep. Mater.7 (2003) 189.10.1023/B:MTDM.0000007217.07156.9bSearch in Google Scholar
[17] M.L.Oyen, R.F.Cook, N.R.Moody, J.A.Emerson: J. Mater. Res.19 (2004) 2487.10.1557/JMR.2004.0308Search in Google Scholar
[18] F.Mammeri, E.Le Bourhis, L.Rozes, C.Sanchez, A.Huignard, D.Lefevre: J. Non-Crystall. Solids 345 &346 (2004) 610.10.1016/j.jnoncrysol.2004.08.107Search in Google Scholar
[19] M.L.Oyen, C.-C.Ko: J. Mater. Sci. Mater. Med. (2006), in press.Search in Google Scholar
[20] W.N.Findley, J.Lai, K.Onaran: Creep and Relaxation of Nonlinear Viscoelastic Materials, Dover, New York (1989).Search in Google Scholar
[21] M.L.Oyen: Philos. Mag.86 (2006) 5625.10.1080/14786430600740666Search in Google Scholar
[22] M.Sakai: J. Mater. Res.14 (1999) 3630.10.1557/JMR.1999.0490Search in Google Scholar
[23] J.J.Vlassak, W.D.Nix: Philos. Mag. A67 (1993) 1045.10.1080/01418619308224756Search in Google Scholar
[24] A.E.H.Love: Treatise on the Mathematical Theory of Elasticity, 3rd Edition, Dover, New York (1944).Search in Google Scholar
[25] C.Macosko: Rheology, Wiley-VCH, New York (1994).Search in Google Scholar
[26] Y.Toivola, A.Stein, R.F.Cook: J. Mater. Res.19 (2004) 260.10.1557/jmr.2004.19.1.260Search in Google Scholar
[27] M.F.Ashby, A.G.Evans, N.A.Fleck, L.J.Gibson, J.W.Hutchinson, H.N.G.Wadley: Metal Foams: A Design Guide, Butterworth-Heinemann (Elsevier), Burlington, MA (2000).Search in Google Scholar
[28] M.F.Doerner, W.D.Nix: J. Mater. Res.1 (1986) 601.10.1557/JMR.1986.0601Search in Google Scholar
[29] M.Sakai, S.Shimizu: J. Non-Crystall. Solids282 (2001) 236.10.1016/S0022-3093(01)00316-7Search in Google Scholar
[30] D.J.Morris, S.B.Myers, R.F.Cook: J. Mater. Res.19 (2004) 165.10.1557/jmr.2004.19.1.165Search in Google Scholar
[31] M.L.Oyen: J. Mater. Res.20 (2005) 2094.10.1557/JMR.2005.0259Search in Google Scholar
[32] J.M.Mattice, A.G.Lau, M.L.Oyen, R.W.Kent: J. Mater. Res.21 (2006) 2003.10.1557/jmr.2006.0243Search in Google Scholar
[33] G.T.Mase, G.E.Mase: Continuum Mechanics for Engineers, 2nd Ed., CRC, Boca Raton, FL (1999).10.1201/9781439832578Search in Google Scholar
[34] C.A.Tweedie, K.J.Van Vliet: J. Mater. Res.21 (2006) 1576.10.1557/jmr.2006.0197Search in Google Scholar
© 2007, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Getting accurate nanoindentation data from time-dependent and microstructural effects of zinc
- Indentation-induced densification of soda-lime silicate glass
- Nanomechanical characterization of relaxation processes in As–S chalcogenide glasses
- Nanoindentation behavior and mechanical properties measurement of polymeric materials
- Model of a superlattice indentation
- Nanomechanical studies of MEMS structures
- Mechanical properties of nanostructured polymer particles for anisotropic conductive adhesives
- Nanomechanical studies of ultrathin polymeric resist films
- Testing the viscoelastic properties of SU8 photo resist thin films at different stages of processing by nanoindentation creep and stress relaxation
- Microscale characterization of bitumen – back-analysis of viscoelastic properties by means of nanoindentation
- Applied
- Visco-elastic properties of thin nylon films using multi-cycling nanoindentation
- Area function calibration in nanoindentation using the hardness instead of Young's modulus of fused silica as a reference value
- Multiscale modelling of nanoindentation
- Unusual architecture of the exceedingly tough Macadamia “nut”-shell as revealed by atomic force microscopy and nanomechanics
- Notifications
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Getting accurate nanoindentation data from time-dependent and microstructural effects of zinc
- Indentation-induced densification of soda-lime silicate glass
- Nanomechanical characterization of relaxation processes in As–S chalcogenide glasses
- Nanoindentation behavior and mechanical properties measurement of polymeric materials
- Model of a superlattice indentation
- Nanomechanical studies of MEMS structures
- Mechanical properties of nanostructured polymer particles for anisotropic conductive adhesives
- Nanomechanical studies of ultrathin polymeric resist films
- Testing the viscoelastic properties of SU8 photo resist thin films at different stages of processing by nanoindentation creep and stress relaxation
- Microscale characterization of bitumen – back-analysis of viscoelastic properties by means of nanoindentation
- Applied
- Visco-elastic properties of thin nylon films using multi-cycling nanoindentation
- Area function calibration in nanoindentation using the hardness instead of Young's modulus of fused silica as a reference value
- Multiscale modelling of nanoindentation
- Unusual architecture of the exceedingly tough Macadamia “nut”-shell as revealed by atomic force microscopy and nanomechanics
- Notifications
- DGM News