Grain refinement and texture formation in torsion deformed NiAl
-
Burghardt Klöden
Abstract
Torsion at elevated temperatures and pressures was used to severely deform the intermetallic compound NiAl. The microstructure and texture as a function of shear strain were investigated by orientation imaging microscopy and diffraction of synchrotron radiation, respectively. The results show that at high shear strains a steady state grain structure and texture develops by continuous dynamic recrystallisation. The lowest grain size achieved is in the micron range, the main texture component is {110}<100>. It is concluded that high-strain torsion may open new possibilities in terms of grain refinement, texture formation and ductilisation of NiAl.
References
[1] R.D.Noebe, R.R.Bowman, M.V.Nathal, in: N.S.Stoloff, V.K.Sikka (Eds.), Physical Metallurgy and Processing of Intermetallic Compounds, Chapman & Hall, New York (1996) 212.10.1007/978-1-4613-1215-4_7Suche in Google Scholar
[2] E.M.Schulson, D.R.Barker: Scripta Metall.17 (1983) 519.Suche in Google Scholar
[3] R.Z.Valiev, Y.Estrin, Z.Horita, T.G.Langdon, M.J.Zehetbauer, Y.T.Zhu: JOM58 (2006) 33.10.1007/s11837-006-0213-7Suche in Google Scholar
[4] W.Skrotzki, B.Klöden, R.Tamm, C.-G.Oertel, L.Wcislak, E.Rybacki, in: M.J.Zehetbauer, R.-Z.Valiev (Eds.), Nanomaterials by Severe Plastic Deformation, Wiley-VCH, Weinheim (2004) 303.10.1002/3527602461.ch5cSuche in Google Scholar
[5] W.Skrotzki, B.Klöden, R.Tamm, C.-G.Oertel, U.Garbe, E.Rybacki: Textures Microstruct.35 (2003) 163.10.1080/07303300310001628733Suche in Google Scholar
[6] M.S.Paterson, D.L.Olgaard: J. Struct. Geol.22 (2000) 1341.10.1016/S0191-8141(00)00042-0Suche in Google Scholar
[7] E.Rybacki, M.S.Paterson, R.Wirth, G.Dresen: J. Geophys. Res.108 (2003) 2089.10.1029/2002JB001833Suche in Google Scholar
[8] H.W.Swift: Engineering163 (1947) 253.10.2307/1438921Suche in Google Scholar
[9] R.Tamm, M.Lemke, C.-G.Oertel, W.Skrotzki: Mater. Sci. Forum273–275 (1998) 411.Suche in Google Scholar
[10] M.Dahms, T.Eschner: Quantitative Texturanalyse durch iterative Reihenzerlegung von Beugungs-Polfiguren (software manual) (1996).Suche in Google Scholar
[11] H.-J.Bunge: Texture Analysis in Materials Science, Mathematical Methods, Culliver Verlag, Göttingen (1993).Suche in Google Scholar
[12] L.S.To´thA.Molinari: Acta Metall. Mater.42 (1994) 2459.10.1016/0956-7151(94)90325-5Suche in Google Scholar
[13] B.Klöden, E.Rybacki, C.-G.Oertel, W.Skrotzki: Scripta Mater.52 (2005) 289.Suche in Google Scholar
[14] J.G.Ramsay, M.I.Huber: The Techniques of Modern Structural Geology, Academic Press, London (1983).Suche in Google Scholar
[15] S.Gourdet, F.Montheillet: Mater. Sci. Eng. A283 (2000) 274.10.1016/S0921-5093(00)00733-4Suche in Google Scholar
[16] F.Montheillet, J.Le Coze: Phys. Stat. Sol. (a)189 (2002) 51.10.1002/1521-396X(200201)189:1<51::AID-PSSA51>3.0.CO;2-MSuche in Google Scholar
[17] S.Gourdet, F.Montheillet: Acta Mater.50 (2002) 2801.10.1016/S1359-6454(02)00098-8Suche in Google Scholar
[18] S.Gourdet, F.Montheillet: Acta Mater.51 (2003) 2685.10.1016/S1359-6454(03)00078-8Suche in Google Scholar
[19] B.Klöden, W.Skrotzki, C.-G.Oertel, E.Rybacki: Mater. Sci. Forum495–497 (2005) 743.Suche in Google Scholar
[20] W.Skrotzki, P.Haasen, in: R.E.Tressler, R.C.Bradt (Eds.), Deformation of Ceramics II, Plenum Publishing Corporation, New York (1984) 429.10.1007/978-1-4615-6802-5_29Suche in Google Scholar
[21] R.von Mises: Z. angew. Math. Mech.8 (1928) 161.10.1002/zamm.19280080302Suche in Google Scholar
[22] M.J.Mills, D.B.Miracle: Acta metall. Mater.41 (1993) 85.10.1016/0956-7151(93)90341-OSuche in Google Scholar
[23] Y.Q.Sun: Phil. Mag.80 (2000) 447.10.1080/01418610008212061Suche in Google Scholar
[24] D.Caillard, C.Vailhe´, D.Farkas: Phil. Mag.79 (1999) 723.10.1080/01418619908210327Suche in Google Scholar
[25] Y.Q.Sun, N.Yang: Acta Mater.51 (2003) 5601.10.1016/S1359-6454(03)00425-7Suche in Google Scholar
[26] R.D.Noebe, R.R.Bowman, M.V.Nathal: NASA Technical Memorandum105598 (1992).Suche in Google Scholar
[27] W.Skrotzki, R.Tamm, C.-G.Oertel, B.Beckers, H.-G.Brokmeier, E.Rybacki: Mater. Sci. Eng. A319 (2001) 364.10.1016/S0921-5093(01)01034-6Suche in Google Scholar
[28] A.A.Nazarov, A.E.Romanov, R.Z.Valiev: Acta metall. Mater.41 (1993) 1033.10.1016/0956-7151(93)90152-ISuche in Google Scholar
[29] J.Fischer-Bühner: PhD Thesis, RWTH Aachen, Shaker Verlag, Aachen (1998).Suche in Google Scholar
© 2007, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Ultrafine-grained materials: a personal perspective
- Retained coarse grains in bulk nanocrystalline Ni3Al
- The effect of grain size on strain rate sensitivity and activation volume – from nano to ufg nickel
- Thermal stability of ECAP processed pure Cu and CuZr
- Grain refinement and texture formation in torsion deformed NiAl
- Shear deformation of submicron-structured materials
- Non-microscopical methods for characterization of microstructures and properties of UFG metals
- Applied
- Deformation processing of massive nanostructured materials
- Effect of Nb–V addition on the mechanical behaviour and structural stability of ultrafine grained steels
- New trends in superplasticity in SPD-processed nanostructured materials
- Deformation behaviour, microstructure and processing of accumulative roll bonded aluminium alloy AA6016
- The influence of post-ECAP annealing on the properties of ultrafine-grained 5005 aluminum alloy sheet
- Enhancement in mechanical behavior and wear resistance of severe plastically deformed two-phase Zn–Al alloys
- Mechanical behavior of nanostructured metals and alloys in the 300–4.2 K temperature interval
- Notifications
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Editorial
- Basic
- Ultrafine-grained materials: a personal perspective
- Retained coarse grains in bulk nanocrystalline Ni3Al
- The effect of grain size on strain rate sensitivity and activation volume – from nano to ufg nickel
- Thermal stability of ECAP processed pure Cu and CuZr
- Grain refinement and texture formation in torsion deformed NiAl
- Shear deformation of submicron-structured materials
- Non-microscopical methods for characterization of microstructures and properties of UFG metals
- Applied
- Deformation processing of massive nanostructured materials
- Effect of Nb–V addition on the mechanical behaviour and structural stability of ultrafine grained steels
- New trends in superplasticity in SPD-processed nanostructured materials
- Deformation behaviour, microstructure and processing of accumulative roll bonded aluminium alloy AA6016
- The influence of post-ECAP annealing on the properties of ultrafine-grained 5005 aluminum alloy sheet
- Enhancement in mechanical behavior and wear resistance of severe plastically deformed two-phase Zn–Al alloys
- Mechanical behavior of nanostructured metals and alloys in the 300–4.2 K temperature interval
- Notifications
- DGM News