Startseite The influence of orientation and aluminium content on the deformation mechanisms of Hadfield steel single crystals
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The influence of orientation and aluminium content on the deformation mechanisms of Hadfield steel single crystals

  • Elena G. Astafurova , Irina V. Kireeva , Yuriy I. Chumlyakov , Hans J. Maier und Huseyin Sehitoglu
Veröffentlicht/Copyright: 23. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The low stacking fault energy and high carbon content in Hadfield steel make twinning the basic deformation mechanism from the onset of plastic deformation in [1¯11] and [011] oriented single crystals in tension at T = 77 – 300 K. Alloying with aluminium (2.7 Al in wt.%) results in an increase of stacking fault energy from 0.03 J · m2 to 0.05 J · m−2 and moves twinning to higher degrees of deformation (∊pl > 15 %). In aluminium-free [1¯23] crystals twinning starts after 20 % strain. For [1¯23], [001] orientations, aluminium additions change the dislocation arrangement from a uniform distribution to a planar dislocation arrangment and also suppress twinning. Intersections of dislocation pile-ups were found to be the governing factor for hardening in the aluminium-alloyed [001] crystals.


* Correspondence address, Elena Astafurova, Siberian Physical Technical Institute at Tomsk State University, Novosobornaya sq., 1, 634050 Tomsk, Russia, Tel.: +3822 533 209, Fax: +3822 533034, E-mail:

References

[1] P.H.Adler, G.B.Olson, W.S.Owen: Metall. Trans. A17 (1986) 1725.10.1007/BF02817271Suche in Google Scholar

[2] K.S.Raghavan, A.S.Sastri, M.J.Marcinkowski: Trans. Metall. Soc. AIME245 (1969) 1569.Suche in Google Scholar

[3] P.Müllner, S.Solenthaler, M.O.Speidel, in: M.H.Yoo, M.Wuttig (Eds.), Twinning in Advanced Materials, The Minerals, Metals and Materials Society, Warrendale, PA (1994) 483.Suche in Google Scholar

[4] Y.N.Dastur, W.C.Leslie: Metall. Trans. A12 (1981) 749.10.1007/BF02648339Suche in Google Scholar

[5] W.S.Owen, M.Grujicic: Acta Mater.47 (1999) 111.10.1016/S1359-6454(98)00347-4Suche in Google Scholar

[6] B.K.Zuidema, D.K.Subramanyam, W.C.Leslie: Metall. Trans. A18 (1987) 1629.10.1007/BF02646146Suche in Google Scholar

[7] R.Berner, H.Kronmüller: Plastische Verformung von Einkristallen, Moderne Probleme der Metallphysik, Bd. 1, Springer-Verlag, Berlin (1965).Suche in Google Scholar

[8] P.B.Hirsch, A.Howie, R.B.Nicholson, D.W.Pashley, M.J.Whelan: Electron Microscopy of Thin Crystals, Krieger, Huntington, New York (1977).Suche in Google Scholar

[9] Y.I.Chumlyakov, I.V.Kireeva, E.I.Litvinova, E.G.Zakharova, N.V.Luzginova, H.Sehitoglu, I.Karaman: The Physics of Metals and Metallography 90, Suppl.1 (2000) S1.Suche in Google Scholar

[10] E.G.Zakharova, I.V.Kireeva, Y.I.Chumlyakov, S.P.Efimenko, H.Sehitoglu, I.Karaman: Doklady Physics47 (2002) 515.10.1134/1.1499189Suche in Google Scholar

[11] I.Karaman, H.Sehitoglu, Y.I.Chumlyakov, H.J.Maier, I.V.Kireeva: Scripta Mater.44 (2001) 337.10.1016/S1359-6462(00)00600-XSuche in Google Scholar

[12] J.W.Christian, S.Mahajan: Progress Mater. Sci.39 (1995) 1.10.1016/0079-6425(94)00007-7Suche in Google Scholar

[13] D.Kuhlmann-Wilsdorf: Mater. Sci. Eng. A113 (1989) 1.10.1016/0921-5093(89)90290-6Suche in Google Scholar

[14] D.Kuhlmann-Wilsdorf: Metall. Mater. Trans. A35 (2004) 369.10.1007/s11661-004-0351-xSuche in Google Scholar

[15] S.I.Hong, C.Laird: Acta Metall. Mater.38 (1990) 1581.10.1016/0956-7151(90)90126-2Suche in Google Scholar

Received: 2004-7-21
Accepted: 2006-11-27
Published Online: 2013-05-23
Published in Print: 2007-02-01

© 2007, Carl Hanser Verlag, München

Heruntergeladen am 17.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101438/pdf
Button zum nach oben scrollen