Startseite Synthesis and oxidation of Zr3Al3C5 powders
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis and oxidation of Zr3Al3C5 powders

  • L. F. He , Y. C. Zhou , Y. W. Bao , J. Y. Wang und M. S. Li
Veröffentlicht/Copyright: 23. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Predominantly single phase Zr3Al3C5 powders were synthesized in an Ar atmosphere using Zr – Al intermetallics and graphite as starting materials. The reaction path of Zr3Al3C5 synthesis was discussed based on differential scanning calorimetry and X-ray diffraction results. Lattice parameters of Zr3Al3C5 determined using the Rietveld method are a = 3.347 Å and c = 27.642 Å. In addition, the oxidation of Zr3Al3C5 powders was tested by using thermogravimetry – differential scanning calorimetry. The starting and complete oxidation temperatures are 400 °C and 1200 °C, respectively. These temperatures are much higher than those for ZrC, suggesting that Zr3Al3C5 has better oxidation resistance than ZrC. On the other hand, the oxidation degree of Zr3Al3C5, defined for the complete carbide – oxide transformation, overshot 100 % during oxidation. This overshooting is attributed to the formation of amorphous carbon. The phase evolution during the oxidation of Zr3Al3C5 was also investigated.

Keywords: Zr3Al3C5; ZrC; Oxidation; XRD; DSC

* Correspondence address, Dr. Yanchun Zhou, Professor and Director of High-performance Ceramic Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P.R. China, Tel.: +86 24 2397 1765, Fax: +86 24 2389 1320, E-mail:

References

[1] E.K.Storms: The Refractory Carbides, Academic Press, New York (1967).Suche in Google Scholar

[2] B.V.Cockeram, D.P.Measures, A.J.Mueller: Thin Solid Films355–356 (1999) 17.Suche in Google Scholar

[3] M.M.Opeka, I.G.Talmy, E.J.Wuchina, J.A.Zaykoski, S.J.Causey: J. Euro. Ceram. Soc.19 (1999) 2405.10.1016/S0955-2219(99)00129-6Suche in Google Scholar

[4] Q.F.Tong, J.L.Shi, Y.Z.Song, Q.G.Guo, L.Liu: Carbon42 (2004) 2495.10.1016/j.carbon.2004.05.006Suche in Google Scholar

[5] S.Shimada, M.Yoshimatsu, M.Inagaki, S.Otani: Carbon36 (1998) 1125.10.1016/S0008-6223(98)00087-6Suche in Google Scholar

[6] S.Shimada, M.Nishisako, M.Inagaki, K.Yamamoto: J. Am. Ceram. Soc.78 (1995) 41.10.1111/j.1151-2916.1995.tb08358.xSuche in Google Scholar

[7] S.Shimada: Solid State Ionics149 (2002) 319.10.1016/S0167-2738(02)00180-7Suche in Google Scholar

[8] S.Shimada: J. Am. Ceram. Soc.75 (1992) 2671.10.1111/j.1151-2916.1992.tb05487.xSuche in Google Scholar

[9] Y.A.Lavrenko, L.A.Glebov, A.P.Pomitkin, V.G.Chuprina, T.G.Protsenko: Oxid, Met.9 (1975) 171.10.1007/BF00613231Suche in Google Scholar

[10] D.Gozzi, G.Guzzardi, A.Salleo: Solid State Ionics83 (1996) 177.10.1016/0167-2738(95)00252-9Suche in Google Scholar

[11] M.W.Barsoum: Prog. Solid State Chem.28 (2000) 201.10.1016/S0079-6786(00)00006-6Suche in Google Scholar

[12] X.H.Wang, Y.C.Zhou: J. Mater, Chem.12 (2002) 455.10.1039/b108685eSuche in Google Scholar

[13] X.H.Wang, Y.C.Zhou: Acta Mater.50 (2002) 3141.Suche in Google Scholar

[14] X.H.Wang, Y.C.Zhou: J. Mater. Chem.12 (2002) 1.Suche in Google Scholar

[15] X.H.Wang, Y.C.Zhou: Chem. Mater.19 (2003) 3716.10.1021/cm030022vSuche in Google Scholar

[16] Z.J.Lin, M.J.Zhuo, L.F.He, Y.C.Zhou, M.S.Li, J.Y.Wang: Acta Mater.54 (2006) 3843.10.1016/j.actamat.2006.02.052Suche in Google Scholar

[17] Z.J.Lin, Y.C.Zhou, M.S.Li, J.Y.Wang: Z. Metallkd.96 (2005) 291.Suche in Google Scholar

[18] J.Y.Wang, Y.C.Zhou, Z.J.Lin, T.Liao, L.F.He: Phys. Rev. B73 (2006) 134107.10.1103/PhysRevB.73.134107Suche in Google Scholar

[19] T.M.Gesing, W.Jeitschko: J. Solid State Chem.140 (1998) 396.10.1006/jssc.1998.7907Suche in Google Scholar

[20] S.I.Mikhalenko, Y.B.Kuz9ma, V.E.Popov, V.N.Gurin, A.P.Nechitailov: Izv. Akad. Nauk SSSR, Neorgan. Mater.15 (1979) 1948.Suche in Google Scholar

[21] S.Hashimoto, A.Yamaguchi, M.Yasuda: J. Mater. Sci.33 (1998) 4835.10.1023/A:1004482314339Suche in Google Scholar

[22] U.Leela-adisorn, S.M.Choi, T.Matsunaga, S.Hashimoto, S.Honda, K.Hayakawa, H.Awaji, A.Yamaguchi: Ceram. Inter.32 (2006) 431.10.1016/j.ceramint.2005.03.019Suche in Google Scholar

[23] U.Leela-Adisorn, S.M.Choi, N.Tera, T.Takeuchi, S.Hashimoto, S.Honda, H.Awaji, K.Hayakawa, A.Yamaguchi: J. Ceram. Soc. Japan113 (2005) 188.10.2109/jcersj.113.188Suche in Google Scholar

[24] R.A.Young: The Rietveld Method, Oxford University Press, Oxford, 1993.Suche in Google Scholar

[25] D.B.Wiles, R.A.Young: J. Appl. Crystallogr.14 (1981) 149.10.1107/S0021889881008996Suche in Google Scholar

[26] U.Leela-adisorn, A.Yamaguchi: Key Eng. Mater.280–283 (2005) 1379.Suche in Google Scholar

[27] Z.M.Sun, Y.Zhang, Y.C.Zhou: Scr. Mater.41 (1999) 61.10.1016/S1359-6462(99)00054-8Suche in Google Scholar

[28] JCPDS card, No. 84-0060.Suche in Google Scholar

[29] S.Shukla, S.Seal: Inter. Mater. Rev.50 (2005) 45.10.1179/174328005X14267Suche in Google Scholar

[30] G.Štefanić, S.Musić, R.Trojko: J. Alloys Compd.388 (2005) 126.Suche in Google Scholar

[31] D.J.Kim, S.H.Hyun, S.G.Kim, M.Yashima: J. Am. Ceram. Soc.77 (1994) 597.10.1111/j.1151-2916.1994.tb07035.xSuche in Google Scholar

Received: 2006-3-2
Accepted: 2006-10-14
Published Online: 2013-05-23
Published in Print: 2007-01-01

© 2007, Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101427/pdf
Button zum nach oben scrollen