Abstract
The paper describes an approach to solve the problem of closing fuel cycle of light water reactors (LWR) trough the multiple uranium recycling. Since the second uranium recycle there is a problem of full return of the recycled uranium to LWR fuel cycle due to significant increasing of 232U concentration and strong regulatory restrictions on its content. The paper shows that the use of a double cascade is able to provide almost complete return of recycled uranium to the fuel cycle with minor losses. The reason for the losses is the necessity to clean the recycled uranium from the 232U isotope. We developed a multicriteria approach to choosing the optimal cascade scheme parameters. The efficiency of the algorithm is demonstrated by the example of enrichment of the recycled uranium of the second recycle. It is shown that not correctly selected optimization criteria of the double cascade enrichment scheme can lead to the fact that the loss of the 235U isotope, provided with waste treatment from 232U, will exceed its savings.
© 2020 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- CONTENTS
- 10.3139/124.200030
- 10.3139/124.200031
- EDITORIAL
- 10.3139/124.200032
- Validation results of the BIPR-8A code, the new module of the software package KASKAD
- Validation of new CMS5-VVER nuclear data library using critical experiments and X2 full-core benchmarkjh
- Optimization of power microfield distribution in JA profiles RK3+ fuel assemblies with 4.68% average enrichment for VVER-440 prospective fuel cycles
- Cycle extension in Slovak VVER-440 reactors to 14 months
- "Full-Core" VVER-1000 calculation benchmark
- Solution of the VVER-1000 full core calculation benchmark by the KARATE code system
- Analysis of the startup physics tests of a VVER-1200 reactor with the KARATE- 1200 code system
- Numerical and experimental studies of the natural circulation mode during commissioning of Unit-1 Novovoronezh NPP-2
- SKETCH-N/ATHLET steady-state and dynamic coupling scheme verification on Kalinin-3 benchmark results
- Safety assessment calculation procedure for operating VVER unit in maneuvering regimes
- Assessment of the VVER-1200 reactivity coefficients on the basis of the data measured at the energy power levels
- Finite element solution of the time-dependent SP3 equations using an implicit integration scheme
- Radiation heating of VVER-4440 thermocouple
- Definition of requirements for REMIXand MOX-fuel effective employment for VVER-reactors
- Fuel cycle of light water reactor with full consumption of recycled uranium
- Imprint
Articles in the same Issue
- CONTENTS
- 10.3139/124.200030
- 10.3139/124.200031
- EDITORIAL
- 10.3139/124.200032
- Validation results of the BIPR-8A code, the new module of the software package KASKAD
- Validation of new CMS5-VVER nuclear data library using critical experiments and X2 full-core benchmarkjh
- Optimization of power microfield distribution in JA profiles RK3+ fuel assemblies with 4.68% average enrichment for VVER-440 prospective fuel cycles
- Cycle extension in Slovak VVER-440 reactors to 14 months
- "Full-Core" VVER-1000 calculation benchmark
- Solution of the VVER-1000 full core calculation benchmark by the KARATE code system
- Analysis of the startup physics tests of a VVER-1200 reactor with the KARATE- 1200 code system
- Numerical and experimental studies of the natural circulation mode during commissioning of Unit-1 Novovoronezh NPP-2
- SKETCH-N/ATHLET steady-state and dynamic coupling scheme verification on Kalinin-3 benchmark results
- Safety assessment calculation procedure for operating VVER unit in maneuvering regimes
- Assessment of the VVER-1200 reactivity coefficients on the basis of the data measured at the energy power levels
- Finite element solution of the time-dependent SP3 equations using an implicit integration scheme
- Radiation heating of VVER-4440 thermocouple
- Definition of requirements for REMIXand MOX-fuel effective employment for VVER-reactors
- Fuel cycle of light water reactor with full consumption of recycled uranium
- Imprint