Optimization of power microfield distribution in JA profiles RK3+ fuel assemblies with 4.68% average enrichment for VVER-440 prospective fuel cycles
-
A. A. Gagarinskiy
, Zh. Yu. Liventseva
, D. R. Kireeva , D. A. Oleksyuk , Yu. P. Kalinin und E. S. Osipova
Abstract
As long as VVER-440 reactors exist, their fuel design is subject to ongoing improvement. Efforts to find the optimal fuel design continue and encompass increasingly extending ranges of both geometry and material parameters of fuel assemblies. This paper presents the results of optimized radial enrichment profiling for RK3+ fuel assemblies and discusses whether it is absolutely necessary to use burnable absorbers (Gd2O3 rods) in fuel assemblies suggested for prospective fuel cycles. Regarding RK3+ and RK2 fuel assemblies, this paper also presents thermohydraulic data yielded by computations performed using SC-1 certified software for a VVER-440 seven-assembly core fragment. These computations show that - compared to RK2 assemblies of the same capacity - RK3+ assemblies with optimized enrichment profile have more uniform radial temperature distributions and lower maximum outlet temperatures.
© 2020 by Walter de Gruyter Berlin/Boston
Artikel in diesem Heft
- CONTENTS
- 10.3139/124.200030
- 10.3139/124.200031
- EDITORIAL
- 10.3139/124.200032
- Validation results of the BIPR-8A code, the new module of the software package KASKAD
- Validation of new CMS5-VVER nuclear data library using critical experiments and X2 full-core benchmarkjh
- Optimization of power microfield distribution in JA profiles RK3+ fuel assemblies with 4.68% average enrichment for VVER-440 prospective fuel cycles
- Cycle extension in Slovak VVER-440 reactors to 14 months
- "Full-Core" VVER-1000 calculation benchmark
- Solution of the VVER-1000 full core calculation benchmark by the KARATE code system
- Analysis of the startup physics tests of a VVER-1200 reactor with the KARATE- 1200 code system
- Numerical and experimental studies of the natural circulation mode during commissioning of Unit-1 Novovoronezh NPP-2
- SKETCH-N/ATHLET steady-state and dynamic coupling scheme verification on Kalinin-3 benchmark results
- Safety assessment calculation procedure for operating VVER unit in maneuvering regimes
- Assessment of the VVER-1200 reactivity coefficients on the basis of the data measured at the energy power levels
- Finite element solution of the time-dependent SP3 equations using an implicit integration scheme
- Radiation heating of VVER-4440 thermocouple
- Definition of requirements for REMIXand MOX-fuel effective employment for VVER-reactors
- Fuel cycle of light water reactor with full consumption of recycled uranium
- Imprint
Artikel in diesem Heft
- CONTENTS
- 10.3139/124.200030
- 10.3139/124.200031
- EDITORIAL
- 10.3139/124.200032
- Validation results of the BIPR-8A code, the new module of the software package KASKAD
- Validation of new CMS5-VVER nuclear data library using critical experiments and X2 full-core benchmarkjh
- Optimization of power microfield distribution in JA profiles RK3+ fuel assemblies with 4.68% average enrichment for VVER-440 prospective fuel cycles
- Cycle extension in Slovak VVER-440 reactors to 14 months
- "Full-Core" VVER-1000 calculation benchmark
- Solution of the VVER-1000 full core calculation benchmark by the KARATE code system
- Analysis of the startup physics tests of a VVER-1200 reactor with the KARATE- 1200 code system
- Numerical and experimental studies of the natural circulation mode during commissioning of Unit-1 Novovoronezh NPP-2
- SKETCH-N/ATHLET steady-state and dynamic coupling scheme verification on Kalinin-3 benchmark results
- Safety assessment calculation procedure for operating VVER unit in maneuvering regimes
- Assessment of the VVER-1200 reactivity coefficients on the basis of the data measured at the energy power levels
- Finite element solution of the time-dependent SP3 equations using an implicit integration scheme
- Radiation heating of VVER-4440 thermocouple
- Definition of requirements for REMIXand MOX-fuel effective employment for VVER-reactors
- Fuel cycle of light water reactor with full consumption of recycled uranium
- Imprint