Abstract
The VVER-1000 Full Core Calculation Benchmark was presented in the 26th AER Symposium in 2016. Recently there are several solutions of this benchmark made by several reactor physics codes. In this paper the solution of the benchmark calculated by the KARATE code system will be presented in details and some comparisons to the reference solution will be shown.
Online erschienen: 2021-02-23
Erschienen im Druck: 2020-04-01
© 2020 by Walter de Gruyter Berlin/Boston
You are currently not able to access this content.
You are currently not able to access this content.
Articles in the same Issue
- CONTENTS
- 10.3139/124.200030
- 10.3139/124.200031
- EDITORIAL
- 10.3139/124.200032
- Validation results of the BIPR-8A code, the new module of the software package KASKAD
- Validation of new CMS5-VVER nuclear data library using critical experiments and X2 full-core benchmarkjh
- Optimization of power microfield distribution in JA profiles RK3+ fuel assemblies with 4.68% average enrichment for VVER-440 prospective fuel cycles
- Cycle extension in Slovak VVER-440 reactors to 14 months
- "Full-Core" VVER-1000 calculation benchmark
- Solution of the VVER-1000 full core calculation benchmark by the KARATE code system
- Analysis of the startup physics tests of a VVER-1200 reactor with the KARATE- 1200 code system
- Numerical and experimental studies of the natural circulation mode during commissioning of Unit-1 Novovoronezh NPP-2
- SKETCH-N/ATHLET steady-state and dynamic coupling scheme verification on Kalinin-3 benchmark results
- Safety assessment calculation procedure for operating VVER unit in maneuvering regimes
- Assessment of the VVER-1200 reactivity coefficients on the basis of the data measured at the energy power levels
- Finite element solution of the time-dependent SP3 equations using an implicit integration scheme
- Radiation heating of VVER-4440 thermocouple
- Definition of requirements for REMIXand MOX-fuel effective employment for VVER-reactors
- Fuel cycle of light water reactor with full consumption of recycled uranium
- Imprint
Articles in the same Issue
- CONTENTS
- 10.3139/124.200030
- 10.3139/124.200031
- EDITORIAL
- 10.3139/124.200032
- Validation results of the BIPR-8A code, the new module of the software package KASKAD
- Validation of new CMS5-VVER nuclear data library using critical experiments and X2 full-core benchmarkjh
- Optimization of power microfield distribution in JA profiles RK3+ fuel assemblies with 4.68% average enrichment for VVER-440 prospective fuel cycles
- Cycle extension in Slovak VVER-440 reactors to 14 months
- "Full-Core" VVER-1000 calculation benchmark
- Solution of the VVER-1000 full core calculation benchmark by the KARATE code system
- Analysis of the startup physics tests of a VVER-1200 reactor with the KARATE- 1200 code system
- Numerical and experimental studies of the natural circulation mode during commissioning of Unit-1 Novovoronezh NPP-2
- SKETCH-N/ATHLET steady-state and dynamic coupling scheme verification on Kalinin-3 benchmark results
- Safety assessment calculation procedure for operating VVER unit in maneuvering regimes
- Assessment of the VVER-1200 reactivity coefficients on the basis of the data measured at the energy power levels
- Finite element solution of the time-dependent SP3 equations using an implicit integration scheme
- Radiation heating of VVER-4440 thermocouple
- Definition of requirements for REMIXand MOX-fuel effective employment for VVER-reactors
- Fuel cycle of light water reactor with full consumption of recycled uranium
- Imprint