Abstract
An important task of the current stage of development of the existing nuclear power system is to find a configuration in which it comes to full self-sufficiency in fuel. A significant share of Russian nuclear power plants at the current stage and in the near future are thermal VVER reactors operating in the open fuel cycle. The first stage of the transition to fuel self-sufficiency can be considered the option of loading these reactors with REMIX and MOX fuel, which will improve the fuel supply indicators. The paper presents a comparison of efficiency indicators presented by the fuel component of the cost and material balance for the scenarios of nuclear power plant development with VVER reactors loaded with classical uranium and REMIX/MOX fuel. The costs of fuel handling stages were considered as variable initial parameters. The calculations were carried out using the STEM-NES software developed at NRC \Kurchatov institute".
© 2020 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- CONTENTS
- 10.3139/124.200030
- 10.3139/124.200031
- EDITORIAL
- 10.3139/124.200032
- Validation results of the BIPR-8A code, the new module of the software package KASKAD
- Validation of new CMS5-VVER nuclear data library using critical experiments and X2 full-core benchmarkjh
- Optimization of power microfield distribution in JA profiles RK3+ fuel assemblies with 4.68% average enrichment for VVER-440 prospective fuel cycles
- Cycle extension in Slovak VVER-440 reactors to 14 months
- "Full-Core" VVER-1000 calculation benchmark
- Solution of the VVER-1000 full core calculation benchmark by the KARATE code system
- Analysis of the startup physics tests of a VVER-1200 reactor with the KARATE- 1200 code system
- Numerical and experimental studies of the natural circulation mode during commissioning of Unit-1 Novovoronezh NPP-2
- SKETCH-N/ATHLET steady-state and dynamic coupling scheme verification on Kalinin-3 benchmark results
- Safety assessment calculation procedure for operating VVER unit in maneuvering regimes
- Assessment of the VVER-1200 reactivity coefficients on the basis of the data measured at the energy power levels
- Finite element solution of the time-dependent SP3 equations using an implicit integration scheme
- Radiation heating of VVER-4440 thermocouple
- Definition of requirements for REMIXand MOX-fuel effective employment for VVER-reactors
- Fuel cycle of light water reactor with full consumption of recycled uranium
- Imprint
Articles in the same Issue
- CONTENTS
- 10.3139/124.200030
- 10.3139/124.200031
- EDITORIAL
- 10.3139/124.200032
- Validation results of the BIPR-8A code, the new module of the software package KASKAD
- Validation of new CMS5-VVER nuclear data library using critical experiments and X2 full-core benchmarkjh
- Optimization of power microfield distribution in JA profiles RK3+ fuel assemblies with 4.68% average enrichment for VVER-440 prospective fuel cycles
- Cycle extension in Slovak VVER-440 reactors to 14 months
- "Full-Core" VVER-1000 calculation benchmark
- Solution of the VVER-1000 full core calculation benchmark by the KARATE code system
- Analysis of the startup physics tests of a VVER-1200 reactor with the KARATE- 1200 code system
- Numerical and experimental studies of the natural circulation mode during commissioning of Unit-1 Novovoronezh NPP-2
- SKETCH-N/ATHLET steady-state and dynamic coupling scheme verification on Kalinin-3 benchmark results
- Safety assessment calculation procedure for operating VVER unit in maneuvering regimes
- Assessment of the VVER-1200 reactivity coefficients on the basis of the data measured at the energy power levels
- Finite element solution of the time-dependent SP3 equations using an implicit integration scheme
- Radiation heating of VVER-4440 thermocouple
- Definition of requirements for REMIXand MOX-fuel effective employment for VVER-reactors
- Fuel cycle of light water reactor with full consumption of recycled uranium
- Imprint