CFD Analysis of Rewetting Behavior in Nuclear Fuel Rod Bundle with Change in Operating Conditions
-
A. Debbarma
und K. M. Pandey
Abstract
Numerical analysis on rewetting of nuclear fuel rod bundle by injecting coolant water in radial jet direction has been performed using Computational Fluid Dynamic (CFD). CFD-CFX results are compared with experimental data and an investigation is carried out for three ranges of numerical operating conditions (central water flow: 150 lpm, 225 lpm and 300 lpm; sub-cooled coolant: 288 K, 298 K and 308 K; initial wall temperature: 430 K, 500 K and 600 K). It was observed that the rewetting behavior shows an irregular pattern of rewetting progress. Rewetting velocity has got no significance under any operating conditions. The effective numerical response is observed for rewetting temperature and wetting delay. Results show an increase in rewetting temperature, and reduction in wetting delay under higher flow rate, low sub-cooling and lowering the initial wall temperature.
Kurzfassung
Das Wiederbenetzungsverhalten von Brennelementbündeln bei radialer Einspritzung von Kühlwasser wurde numerisch mit dem Computational Fluid Dynamic (CFD) CFD-CFX untersucht. Die Ergebnisse wurden mit experimentellen Daten verglichen. Im Detail wurden drei verschiedene Betriebsbedingungen untersucht: Die zentrale Wasserströmung wurde zwischen 150 lpm, 225 lpm und 300 lpm variiert, die Temperatur des unterkühlten Kühlwassers zwischen 288 K, 298 K und 308 K und die Anfangswandtemperatur betrug zwischen 430 K, 500 K und 600 K. Im Ergebnis wurde eine unregelmäßige Ausbreitung der Wiederbenetzung beobachtet. Die Wiederbenetzungsgeschwindigkeit hatte bei keiner der gewählten Betriebsbedingungen einen Einfluss. Allein die Wiederbenetzungstemperatur und die Benetzungsverzögerung zeigten einen Einfluss auf die Ergebnisse: Ein zunehmender Durchfluss bei niedrigerer Unterkühlung und niedrigerer Anfangswandtemperatur führten in den Rechnungen zu einer höheren Wiederbenetzungstemperatur und einer verringerten Benetzungsverzögerung.
References
1 Carbajo, J. J.: A Study on the rewetting temperature. Nucl. Eng. Des.84 (1985) 21–5210.1016/0029-5493(85)90310-3Suche in Google Scholar
2 Sinha, R. K.; Kakodkar, A.: Design and development of the AHWR – the Indian thorium fuelled innovative nuclear reactor, Nucl. Eng. Des., Vol. 236, pp. 683–700, 2006. 10.1016/j.nucengdes.2005.09.026Suche in Google Scholar
3 Bhabha Atomic Research Centre (BARC): Advanced Heavy Water Reactor (AHWR). Government of India, Department of Atomic Energy, http://www.barc.gov.in/reactor/ahwr.html (access on 10-08-16)Suche in Google Scholar
4 Sahu, S. K.; Das, P. K.; Bhattacharyya, S.: An experimental investigation on the quenching of a hot vertical heater by water injection at high flow rate. Nucl. Eng. Des.240 (2010) 1558–156810.1016/j.nucengdes.2010.02.028Suche in Google Scholar
5 Piggott, B. D. G.; White, E. P.; Duffey, R. B.: Wetting delay due to film and transition boiling on hot surfaces. Nucl. Eng. Des.36 (1976) 169–18110.1016/0029-5493(76)90003-0Suche in Google Scholar
6 Thompson, T. S.: On the process of rewetting a hot surface by a falling liquid film. Nucl. Eng. Des.31 (1974) 234–24510.1016/0029-5493(75)90144-2Suche in Google Scholar
7 Ragheb, H. S.; Cheng, S. C.; Groeneveld, D. C.: Observations in transition boiling of subcooled water under forced convective conditions, Int. J. Heat Mass Transf., Vol. 24, pp. 1127–1137, 198110.1016/0017-9310(81)90162-9Suche in Google Scholar
8 Cheng, S. C.; Lau, P. W. K.; Poon, K. T.: Measurements of true quench temperature of subcooled water under forced convective conditions. Int. J. Heat Mass Transf.28 (1985) 235–24310.1016/0017-9310(85)90025-0Suche in Google Scholar
9 Mozumder, A. K.; Monde, M.; Woodfield, P.L.: Delay of wetting propagation during jet impingement quenching for a high temperature surface. Int. J. Heat Mass Transf.48 (2005) 5395–540710.1016/j.ijheatmasstransfer.2005.06.034Suche in Google Scholar
10 Chen, W. J.; Lee, Y.; Groeneveld, D. C.: Measurement of boiling curves during of a hot circular duct. Int. J. Heat Mass Transf.22 (1979) 973–97610.1016/0017-9310(79)90039-5Suche in Google Scholar
11 Wolf, D. H.; Incropera, F. P.; Viskanta, R.: Local jet impingement boiling heat transfer. Int. J. Heat Mass Transf.39 (1996) 1395–140610.1016/0017-9310(95)00216-2Suche in Google Scholar
12 LiuZ.-H.; Wang, J.: Study on film boiling heat transfer for water jet impinging on high temperature flat plate. Int. J. Heat Mass Transf.44 (2001) 2475–248110.1016/S0017-9310(00)00281-7Suche in Google Scholar
13 Saxena, A. K.; Raj, V. V.; Rao, V. G.: Experimental studies on rewetting of hot vertical annular channel. Nucl. Eng. Des.208 (2001) 283–30310.1016/S0029-5493(01)00356-9Suche in Google Scholar
14 Timm, W.; Weinzierl, K.; Leipertz, A.: Heat transfer in subcooled jet impingement boiling at high wall temperatures. Int. J. Heat Mass Transf.46 (2003) 1385–139310.1016/S0017-9310(02)00416-7 Suche in Google Scholar
15 Hammad, J.; Mitsutake, Y.; Monde, M.: Movement of maximum heat flux and wetting front during quenching of hot cylindrical block. Int. J. Therm. Sci.,43 (2004) 743–75210.1016/j.ijthermalsci.2004.02.014Suche in Google Scholar
16 Woodfield, P. L.; Monde, M.; Mozumder, A. K.: Observations of high temperature impinging-jet boiling phenomena. Int. J. Heat Mass Transf.48 (2005) 2032–204110.1016/j.ijheatmasstransfer.2004.12.011Suche in Google Scholar
17 Xu, F.; Gadala, M. S.: Heat transfer behavior in the impingement zone under circular water jet. Int. J. Heat Mass Transf.49 (2006) 3785–379910.1016/j.ijheatmasstransfer.2006.03.034Suche in Google Scholar
18 Lallave, J. C.; Rahman, M. M.; Kumar, A.: Numerical analysis of heat transfer on a rotating disk surface under confined liquid jet impingement. Int. J. Heat Fluid Flow28 (2007) 720–73410.1016/j.ijheatfluidflow.2006.09.005Suche in Google Scholar
19 Agrawal, C.; Lyons, O. F.; Kumar, R.; Gupta, A.; Murray, D. B.: Rewetting of a hot horizontal surface through mist jet impingement cooling. Int. J. Heat Mass Transf.58 (2013) 188–19610.1016/j.ijheatmasstransfer.2012.10.079Suche in Google Scholar
20 Patil, N. D.; Das, P. K.; Bhattacharyya, S.; SahuS. K.: An experimental assessment of cooling of a 54-rod bundle by in-bundle injection. Nucl. Eng. Des.250 (2012) 500–51110.1016/j.nucengdes.2012.05.017Suche in Google Scholar
21 Kumar, M.; Mukhopadhyay, D.; Ghosh, A. K.; Kumar, R.: Study on Influence of Rewetting on Conduction Heat Transfer for AHWR Fuel Bundle Re-flooding Phenomena. Int. J. Nucl. Energy Sci. Eng.3 (2013) 85–9410.14355/ijnese.2013.0304.02Suche in Google Scholar
22 Kumar, M.; Mukhopadhyay, D.; Ghosh, A. K.; Kumar, R.: Numerical Study on Influence of Cross Flow on Rewetting of AHWR Fuel Bundle. Sci. World J.2014 (2014) 1–10 25405235 10.1155/2014/141328Suche in Google Scholar
23 DebbarmaA.; Pandey, K. M.: NumericalAnalysis on the Effect of Flow Rates and Jet Diameter in Rewetting Vertical Nuclear Fuel Bundle with Jet Impingements. Annals of Nuclear Energy94 (2016) 518–52910.1016/j.anucene.2016.04.023Suche in Google Scholar
24 DebbarmaA.; Pandey, K. M.: Influenceon rewetting temperature and wetting delay during rewetting rod bundle byvarious radialjet models. Kerntechnik81 (2016) 50–5910.3139/124.110571Suche in Google Scholar
25 DebbarmaA.; Pandey, K. M.: CFD Analysis of Rewetting of a Single Sector AHWR Fuel Cluster with Changing Jet Directions. Nucl. Eng. Des.308 (2016) 51–5910.1016/j.nucengdes.2016.08.007Suche in Google Scholar
26 Carbajo, J. J.: Parametric study on rewetting velocities obtained with a two-dimensional heat conduction code. Nucl. Eng. Des.92 (1986) 69–8710.1016/0029-5493(86)90100-7Suche in Google Scholar
27 Duffey, R. B.; Porthouse, D. T. C.: The physics of rewetting in water reactor emergency core cooling. Nucl. Eng. Des.25 (1973) 379–39410.1016/0029-5493(73)90033-2Suche in Google Scholar
28 Elias, E.; Yadigaroglu, G.: A general one-dimensional model for conduction-controlled rewetting of a surface. Nucl. Eng. Des.42 (1977) 185–19410.1016/0029-5493(77)90180-7Suche in Google Scholar
29 Bernardin, J. D.; Stebbins, C. J.; Mudawar, I.: Mapping of impact and heat transfer regimes of water drops impinging on a polished surface, Int. J. Heat Mass Transfer40 (1997) 247–26710.1016/0017-9310(96)00119-6Suche in Google Scholar
30 Sinha, J.: Effects of Surface Roughness, Oxidation Level, and Liquid Subcooling on the Minimum Film Boiling Temperature. Exp. Heat Transf.16 (2003) 45–6010.1080/08916150303749Suche in Google Scholar
31 Filipovic, J.; Incropera, F. P.; Viskanta, R.: Rewetting Temperatures and Velocity in a Quenching Experiment. Exp. Heat Transf.8 (1995) 257–27010.1080/08916159508946505Suche in Google Scholar
© 2018, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Technical Contributions/Fachbeiträge
- Analysis of double-ended guillotine break at a direct vessel Injection line of ATLAS
- Mathematical model for prediction of droplet sizes and distribution associated with impact of liquid-containing projectile
- Natural circulation in a rectangular loop with vertical heater below vertical cooler
- CFD Analysis of Rewetting Behavior in Nuclear Fuel Rod Bundle with Change in Operating Conditions
- Investigation of the excitation functions for the (n, 2n) reactions on the structural fusion material 58,60 – 62,64Ni
- Simulation model for centrifugal pump in flow networks based on internal characteristics
- Evaluation of control room habitability in case of LOCA for Maanshan NPP using codes RADTRAD, HABIT and ALOHA
- Steady-state analysis of AP1000 with MOX/UOX mixed core loading
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Technical Contributions/Fachbeiträge
- Analysis of double-ended guillotine break at a direct vessel Injection line of ATLAS
- Mathematical model for prediction of droplet sizes and distribution associated with impact of liquid-containing projectile
- Natural circulation in a rectangular loop with vertical heater below vertical cooler
- CFD Analysis of Rewetting Behavior in Nuclear Fuel Rod Bundle with Change in Operating Conditions
- Investigation of the excitation functions for the (n, 2n) reactions on the structural fusion material 58,60 – 62,64Ni
- Simulation model for centrifugal pump in flow networks based on internal characteristics
- Evaluation of control room habitability in case of LOCA for Maanshan NPP using codes RADTRAD, HABIT and ALOHA
- Steady-state analysis of AP1000 with MOX/UOX mixed core loading