Steady-state analysis of AP1000 with MOX/UOX mixed core loading
-
H. K. Selim
, E. H. Amin und H. M. Hussein
Abstract
Safety analysis is a major part during licensing a nuclear power plant. This paper presents coupled neutronic thermal-hydraulic calculations for a MOX/UOX mixed core loading of the Westinghouse AP1000 pressurized water reactor concept. Originally, the initial core loading of the reactor has three types of UO2 fuel assemblies with U235 enrichments are: 2.35 w/o, 3.40 w/o and 4.45 w/o. In this paper, it is assumed that one-third of fuel assemblies is replaced by MOX assemblies. The steady state conditions are calculated with the code QUARK. QUARK is a 3D neutronic kinetics code coupled to core thermal hydraulics code. The required cross-section data for QUARK were generated using WIMSD5. The results of the steady state analysis show that both core loading schemes can be used in AP1000 as the safety criteria mentioned in design control document are met.
Kurzfassung
Sicherheitsanalysen sind ein wesentlicher Bestandteil des Genehmigungsprozesses eines Kernkraftwerks. Die Autoren führen gekoppelte Rechnung eine MOX/UOX-Mischkernbeladung durch, wobei sie den Kern in Anlehnung an das Design eines Kerns eines Westinghouse AP1000 Druckwasserreaktors definieren. Während die Originalkernbeladung des Reaktors aus drei unterschiedlich angereicherten UO2-Brennstoffgruppen (U235-Anreicherungen von 2,35 w/o, 3,40 w/o und 4,45 w/o) besteht, wird in diesem Beitrag angenommen, dass ein Drittel der Brennelemente durch MOX-Brennelement ersetzt werden. Für diese Mischkernbeladung werden stationäre Kernrechnungen mit dem Programm QUARK durchgeführt. QUARK ist eine 3D Neutronenkinetik-Berechnung, die an den Code der thermischen Kernhydraulik gekoppelt ist. Die erforderlichen Querschnittsdaten für QUARK wurden mit Hilfe von WIMSD5 generiert. Die Ergebnisse der stationären Analyse zeigen, dass beide Kernbelastungsschemata in AP1000 verwendet werden können, da die Sicherheitskriterien, die im Entwurfskontrolldokument erwähnt werden, erfüllt sind.
References
1 International Atomic Energy Authority: Computational Analysis of the Behavior of Nuclear Fuel under Steady State, Transient and Accident Conditions. IAEA-TECDOC-1578 (2007)Suche in Google Scholar
2 International Atomic Energy Authority: Safety Margins of Operating Reactors, Analysis of uncertainties and implications for decision making. IAEA-TECDOC-1332 (2003)Suche in Google Scholar
3 International Atomic Energy Authority: Use and Development of Coupled Computer Codes for the Analysis of Accidents at Nuclear Power Plants. IAEA-TECDOC-1539 (2007)Suche in Google Scholar
4 Abarca, A.; Miró, R.; Barrachina, T.; Verdú, G.: A Procedure for Coupled Thermal-Hydraulic Subchanel and Neutronic Codes using Cobra-TF and PARCS. International Nuclear Atlantic Conference (INAC) (2011)Suche in Google Scholar
5 Lozano, J. A.; Aragonés, J. M.; García-Herranz, N.: Transient analysis in the 3D nodal kinetics and thermal-hydraulics ANDES/COBRA coupled system. International Conference on the Physics of Reactors “Nuclear Power: A Sustainable Resource” Casino-Kursaal Conference Center, Interlaken, Switzerland (2008)Suche in Google Scholar
6 Very High Burn-ups in Light Water Reactors. Organization for Economic Co-Operation and Development, Nuclear Energy Agency (2006)Suche in Google Scholar
7 International Atomic Energy Authority: Status and Advances in MOX Fuel Technology. Technical Reports Series No. 415 (2003)Suche in Google Scholar
8 Trellue, H. R.: Safety and Neutronics: A comparison of MOX vs UO2 fuel. Progress in Nuclear Energy48 (2006) 135–14510.1016/j.pnucene.2005.04.003Suche in Google Scholar
9 Provost, J.-L.; Debes, M.: MOX and UOX PWR Fuel Performances EDF Operating Experience. Journal of Nuclear Science and Technology43 (2006) 960–96210.1080/18811248.2006.9711182Suche in Google Scholar
10 Westinghouse European design control document. Rev.1 (2011)Suche in Google Scholar
11 International Atomic Energy Authority: Advanced Passive PWR AP1000. Status Report 81 (2011)Suche in Google Scholar
12 QUARK, code system for 2-Group, 3D neutronic kinetics calculations coupled to core thermal hydraulic. RSICC (2000)Suche in Google Scholar
13 WIMS-D5 – Winfrith Improved Multigroup Scheme Code System. RSICC (1991)Suche in Google Scholar
© 2018, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Technical Contributions/Fachbeiträge
- Analysis of double-ended guillotine break at a direct vessel Injection line of ATLAS
- Mathematical model for prediction of droplet sizes and distribution associated with impact of liquid-containing projectile
- Natural circulation in a rectangular loop with vertical heater below vertical cooler
- CFD Analysis of Rewetting Behavior in Nuclear Fuel Rod Bundle with Change in Operating Conditions
- Investigation of the excitation functions for the (n, 2n) reactions on the structural fusion material 58,60 – 62,64Ni
- Simulation model for centrifugal pump in flow networks based on internal characteristics
- Evaluation of control room habitability in case of LOCA for Maanshan NPP using codes RADTRAD, HABIT and ALOHA
- Steady-state analysis of AP1000 with MOX/UOX mixed core loading
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Technical Contributions/Fachbeiträge
- Analysis of double-ended guillotine break at a direct vessel Injection line of ATLAS
- Mathematical model for prediction of droplet sizes and distribution associated with impact of liquid-containing projectile
- Natural circulation in a rectangular loop with vertical heater below vertical cooler
- CFD Analysis of Rewetting Behavior in Nuclear Fuel Rod Bundle with Change in Operating Conditions
- Investigation of the excitation functions for the (n, 2n) reactions on the structural fusion material 58,60 – 62,64Ni
- Simulation model for centrifugal pump in flow networks based on internal characteristics
- Evaluation of control room habitability in case of LOCA for Maanshan NPP using codes RADTRAD, HABIT and ALOHA
- Steady-state analysis of AP1000 with MOX/UOX mixed core loading