Abstract
This paper applies a nonlinear analysis method to show that hysteresis phenomenon, due to the Saddle-node bifurcation, may occur in the nuclear reactor. This phenomenon may have significant effects on nuclear reactor dynamics and can even be the beginning of a nuclear reactor accident. A system of four dimensional nonlinear ordinary differential equations was considered to study the hysteresis phenomenon in a typical nuclear reactor. It should be noted that the reactivity was considered as a nonlinear function of state variables. The condition for emerging hysteresis was investigated using Routh-Hurwitz criterion and Sotomayor’s theorem for saddle node bifurcation. A numerical analysis is also provided to illustrate the analytical results.
Abstract
In diesem Beitrag wird eine nichtlineare Analysemethode verwendet um zu zeigen, dass aufgrund der Sattel-Knoten-Bifurkation Hysterese-Phänomene im Reaktor auftreten können. Dieses Phänomen kann signifikante Effekte auf die Dynamik von Kernreaktoren haben bis hin zur Auslösung eines Störfalls. Ein System von nichtlinearen gewöhnlichen Differentialgleichungen wurde betrachtet um die Hysterese-Phänomene in einem typischen Kernreaktor zu untersuchen. Dabei wurde die Reaktivität als nichtlineare Funktion von Zustandsvariablen betrachtet. Die Bedingung aufkommende Hysterese wurde mit Hilfe des Routh-Hurwitz-Kriterions und des Sotomayor-Theorems für Sattel-Knoten-Bifurkation untersucht. Eine numerische Analyse wird ebenfalls zur Verfügung gestellt um die analytischen Ergebnisse zu verdeutlichen.
References
1 Bell, G.; Glasstone, S.: Nuclear reactor theory. Van Nostrand Reinhold Inc., U.S. 1970Search in Google Scholar
2 Podowski, M.: A study of nuclear reactor models with nonlinear reactivity feedbacks: Stability criteria and power overshoot evaluation. Transactions on Automatic Control, IEEE Volume 31 (1986) 108, 10.1109/TAC.1986.1104204Search in Google Scholar
3 Strogatz, S.: Nonlinear Dynamics and Chaos: with application to Physics, Biology, Chemistry and Engineering. First ed, Westview Press, 1994Search in Google Scholar
4 Krasnosel’skil, M. A; Pokrovskii, A. V.: Systems with Hysteresis. Springer-Verlag, Berlin, 1989, DOI:10.1007/978-3-642-61302-910.1007/978-3-642-61302-9Search in Google Scholar
5 Visintin, A.: Differential Models of Hysteresis, Springer-Verlag, Berlin, 1994, DOI:10.1007/978-3-662-11557-210.1007/978-3-662-11557-2Search in Google Scholar
6 Brokate, M. and Sprekels. J.: Hysteresis and Phase Transitions, Springer, HeidelbergSearch in Google Scholar
7 Mayergoyz, I. D.: Mathematical Models of Hysteresis and their Applications, Academic Press, 2003, PMid:1475411710.1016/B978-012480873-7/50005-0Search in Google Scholar
8 Ash, M.: Nuclear reactor kinetics. McGraw-Hill Book Co. New York, 1979Search in Google Scholar
9 Lellouche, G. S.: Reactor-kinetics stability criteria. Nucl Sci Eng 24 (1966) 110.13182/NSE66-A18125Search in Google Scholar
10 Chernick, J.: Xenon-controlled reactor. Nucl Sci Eng 8 (1960) 23310.13182/NSE60-A25804Search in Google Scholar
11 Perko, L.: Differential Equations and Dynamical Systems, Springer.Search in Google Scholar
12 Guckenheimer, J.; Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer-Verlag, 1996Search in Google Scholar
13 Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Second ed, Springer, 2003Search in Google Scholar
14 Rizwan-uddin: Turning points and sub- and supercritical bifurcations in a simple BWR model. Nucl Eng Design 236 (2006) 267, DOI:10.1016/j.nucengdes.2005.08.00310.1016/j.nucengdes.2005.08.003Search in Google Scholar
15 Wahi, P.; Kumawat, V.: Nonlinear stability analysis of a reduced order model of nuclear reactors: a parametric study relevant to the advanced heavy water reactor. Nucl Eng Design 241 (2011), DOI:10.1016/j.nucengdes.2010.11.00610.1016/j.nucengdes.2010.11.006Search in Google Scholar
16 Pirayesh. B.; Pazirandeh, A.; Akbari, M.: Local bifurcation analysis in nuclear reactor dynamics by Sotomayor’s theorem. Annals of Nuclear Energy 94 (2016)10.1016/j.anucene.2016.04.021Search in Google Scholar
17 Gábor, A.; Fazekas, C.; Szederkény, G.; Hangos, K.: Modeling and Identification of a Nuclear Reactor with Temperature Effects and Xenon Poisoning, Industrial Electronics. IECON ’09. 35th Annual Conference of IEEE, 200910.1109/IECON.2009.5414753Search in Google Scholar
18 Dong, Zhe: Nonlinear Adaptive Dynamic Output-Feedback Power-Level Control of Nuclear Heating Reactors. Science and Technology of Nuclear Installations, 2013, DOI:10.1155/2013/79416710.1155/2013/794167Search in Google Scholar
19 Lewis, E.: Fundamentals of Nuclear Reactor Physics, Academic Press, 200810.1016/B978-0-12-370631-7.00001-2Search in Google Scholar
20 Edwards, R. M.; Lee, K. Y.; Ray, A.: Robust optimal control of nuclear reactors and power plants. Nucl Technol 98 (1992)10.13182/NT92-A34669Search in Google Scholar
Books · Bücher
Management of Radioactive Waste after a Nuclear Power Plant Accident. NEA report No. 7305, Published by OECD/NEA, 2016, 225 pp., in English, available online at: http://www.oecd-nea.org/rwm/pubs/2016/7305-mgmt-rwm-npp-2016.pdf
The NEA Expert Group on Fukushima Waste Management and Decommissioning R&D (EGFWMD) was established in 2014 to offer advice to the authorities in Japan on the management of large quantities of on-site waste with complex properties and to share experiences with the international community and NEA member countries on ongoing work at the Fukushima Daiichi site. The group was formed with specialists from around the world who had gained experience in waste management, radiological contamination or decommissioning and waste management R&D after the Three Mile Island and Chernobyl accidents. This report provides technical opinions and ideas from these experts on post-accident waste management and R&D at the Fukushima Daiichi site, as well as information on decommissioning challenges.
© 2017 Carl Hanser Verlag GmbH & Co. KG
Articles in the same Issue
- Frontmatter
- Best estimate approach for the evaluation of critical heat flux phenomenon in the boiling water reactors
- Coupled neutronic core and subchannel analysis of nanofluids in VVER-1000 type reactor
- PCTRAN enhancement for large break loss of coolant accident concurrent with loss of offsite power in VVER-1000 simulation
- Experimental study of natural circulation flow instability in rectangular channels
- Exerimental method and preliminary studies of the passive containment water film evaporation mass transfer
- Automated generation of burnup chain for reactor analysis applications
- Fission source sampling in coupled Monte Carlo simulations
- Hysteresis phenomenon in nuclear reactor dynamics
- Investigation of neutronic and safety parameters variation in 5 MW research reactor due to U3O8Al fuel conversion to ThO2 + U3O8Al
- Implementation of meso-scale radioactive dispersion model for GPU
- Solution of the multilayer multigroup neutron diffusion equation in cartesian geometry by fictitious borders power method
- Half-space albedo problem with modified FN method for linear and quadratic anisotropic scattering
Articles in the same Issue
- Frontmatter
- Best estimate approach for the evaluation of critical heat flux phenomenon in the boiling water reactors
- Coupled neutronic core and subchannel analysis of nanofluids in VVER-1000 type reactor
- PCTRAN enhancement for large break loss of coolant accident concurrent with loss of offsite power in VVER-1000 simulation
- Experimental study of natural circulation flow instability in rectangular channels
- Exerimental method and preliminary studies of the passive containment water film evaporation mass transfer
- Automated generation of burnup chain for reactor analysis applications
- Fission source sampling in coupled Monte Carlo simulations
- Hysteresis phenomenon in nuclear reactor dynamics
- Investigation of neutronic and safety parameters variation in 5 MW research reactor due to U3O8Al fuel conversion to ThO2 + U3O8Al
- Implementation of meso-scale radioactive dispersion model for GPU
- Solution of the multilayer multigroup neutron diffusion equation in cartesian geometry by fictitious borders power method
- Half-space albedo problem with modified FN method for linear and quadratic anisotropic scattering