Home Technology Sensitivity analysis for CORSOR models simulating fission product release in LOFT-LP-FP-2 severe accident experiment
Article
Licensed
Unlicensed Requires Authentication

Sensitivity analysis for CORSOR models simulating fission product release in LOFT-LP-FP-2 severe accident experiment

  • S. M. Hoseyni , M. Pourgol-Mohammad and F. Yousefpour
Published/Copyright: April 18, 2017
Become an author with De Gruyter Brill

Abstract

This paper deals with simulation, sensitivity and uncertainty analysis of LP-FP-2 experiment of LOFT test facility. The test facility simulates the major components and system response of a pressurized water reactor during a LOCA. MELCOR code is used for predicting the fission product release from the core fuel elements in LOFT LP-FP-2 experiment. Moreover, sensitivity and uncertainty analysis is performed for different CORSOR models simulating release of fission products in severe accident calculations for nuclear power plants. The calculated values for the fission product release are compared under different modeling options to the experimental data available from the experiment. In conclusion, the performance of 8 CORSOR modeling options is assessed for available modeling alternatives in the code structure.

Kurzfassung

Dieser Beitrag handelt von der Sensitivitäts- und Unsicherheitsanalyse des LP-FP-2-Experiments der LOFT-Versuchsanlage. Die Anlage bildet die Hauptkomponenten und das Systemverhalten eines Druckwasserreaktors während eines LOCA nach. Der MELCOR-Code berechnet die Spaltproduktfreisetzung aus den Kernbrennelementen beim LOFT LP-FP-2-Experiment. Des Weiteren werden Sensitivitäts- und Unsicherheitsanalysen für verschiedene CORSOR-Modelle durchgeführt, die die Spaltproduktfreisetzung bei Unfallrechnungen von Kernkraftwerken simulieren. Die berechneten Werte der Spaltproduktfreisetzung werden unter verschiedenen Modelloptionen verglichen mit den verfügbaren experimentellen Daten. Insgesamt wird die Leistungsfähigkeit von 8 CORSOR-Modell-Optionen bewertet.


* E-mail:

References

1 Kmetyk, L. N.: MELCOR 1.8.1 Assessment: LOFT Integral Experiment LP-FP-2. 199210.2172/6119518Search in Google Scholar

2 OECD/NEA: In-Vessel Core Degradation Code Validation Matrix Update 1996–1999, NEA/CSNI/R(2000)21 2001Search in Google Scholar

3 Dickson, R.; Lewis, B.J.; Iglesias, F.C.; Ducros, G.; Kudoe, T.: Overview of experimental programs on core melt progression and fission product release behaviour. Jouranl of Nuclear Material380 (2008) 12614310.1016/j.jnucmat.2008.07.005Search in Google Scholar

4 Gauntt, R. O. et al.: MELCOR 1.8.6 Computer Code Manuals, 2 Volumes. NUREG/CR-6119, 2005Search in Google Scholar

5 Gauntt, R. O.: MELCOR 1.8.5 Modeling Aspects of Fission Product Release, Transport and Deposition. SAND20101635, 201010.2172/991532Search in Google Scholar

6 Hoseyni, S. M.; Pourgol-Mohammad, M.; Abbaspour Tehranifard, A.; Yousefpour, F.: A systematic framework for effective uncertainty assessment of severe accident calculations; Hybrid qualitative and quantitative methodology. Reliability Engineering & System Safety125 (2012) Special issue of selected articles from ESREL, pp. 22–35, 2014Search in Google Scholar

7 Pourgol-Mohamad, M.; Modarres, M.; Mosleh, A.: Integrated Methodology for Thermal-Hydraulic Code Uncertainty Analysis with Application. Nuclear Technology165 (2007) 33335910.13182/NT165-333Search in Google Scholar

8 Pourgol-Mohammad, M.; Mosleh, A.; Modarres, M.: Structured treatment of model uncertainty in complex thermal-hydraulics codes: technical challenges, prospectives and characterization. Nuclear engineering and design241 (2010) 28529510.1016/j.nucengdes.2010.10.035Search in Google Scholar

9 Pourgol-Mohammad, M.: Thermal–hydraulics system codes uncertainty assessment: A review of the methodologies. Annals of Nuclear Energy36 (2009) 1774178610.1016/j.anucene.2009.08.018Search in Google Scholar

Received: 2016-01-24
Published Online: 2017-04-18
Published in Print: 2017-03-16

© 2017, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Technical Contributions/Fachbeiträge
  6. CANDU pressure tube leak detection by annulus gas dew point measurement: a critical review
  7. Multiple regression approach to predict turbine-generator output for Chinshan nuclear power plant
  8. 10.3139/124.110675
  9. Development of a parallel processing couple for calculations of control rod worth in terms of burn-up in a WWER-1000 reactor
  10. Simulation of protected and unprotected loss of flow transients in a WWER-1000 reactor based on the Drift-Flux Model
  11. Sensitivity analysis for CORSOR models simulating fission product release in LOFT-LP-FP-2 severe accident experiment
  12. Analysis of the optimal fuel composition for the Indonesian experimental power reactor
  13. Radiogenic lead from poly-metallic thorium ores as a valuable material for advanced nuclear facilities
  14. The effects of applying silicon carbide coating on core reactivity of pebble-bed HTR in water ingress accident
  15. Font Attributes based Text Steganographic algorithm (FATS) for communicating images: A nuclear power plant perspective
  16. Size control synthesis and characterization of ZnO nanoparticles and its application as ZnO-water based nanofluid in heat transfer enhancement in light water nuclear reactor
  17. Nuclear characteristics of epoxy resin as a space environment neutron shielding
  18. Exact solution of the neutron transport equation in spherical geometry
  19. Technical Notes/Technische Mitteilungen
  20. Determination of self-attenuation correction factor for lichen samples by using gamma-ray spectrometry
Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110610/pdf
Scroll to top button