Home Technology Simulation of protected and unprotected loss of flow transients in a WWER-1000 reactor based on the Drift-Flux Model
Article
Licensed
Unlicensed Requires Authentication

Simulation of protected and unprotected loss of flow transients in a WWER-1000 reactor based on the Drift-Flux Model

  • G. Baghban , M. Shayesteh and M. Bahonar
Published/Copyright: April 18, 2017
Become an author with De Gruyter Brill

Abstract

In view of the importance of studying coolant transient behavior in a nuclear reactor, this work is devoted to the thermal-hydraulic analysis of protected and unprotected loss of flow transients in a WWER-1000 reactor. A series of corresponding mathematical and physical models based on the four-equation Drift-Flux model has been applied. Based on a multi-channel approach, the core has been divided into different regions. Each region has different characteristics as represented in a single fuel pin with its associated coolant channel. Appropriate initial and boundary conditions have been considered and two situations of tripping four and two primary pumps in a protected core in addition to situation of tripping all four pumps in an unprotected core have been analyzed. For each transient, a full range of thermal-hydraulic parameters has been obtained. For verification of the proposed model, the results have been compared with those of the RELAP5/MOD3 and Bushehr nuclear power plant Final Safety Analysis Report (FSAR). A good agreement between results has been attained for the aforementioned transients.

Kurzfassung

Im Hinblick auf die Bedeutung der Untersuchung des Transientenverhaltens in einem Reaktor ist dieser Beitrag der thermohydraulischen Analyse von transienten Strömungsvorgängen in einem WWER-1000-Reaktor gewidmet. Eine Reihe von geeigneten mathematischen und physikalischen Modellen auf der Grundlage des Drift-Flux-Modells wurde angewendet. Basierend auf einem Multikanal-Ansatz wurde der Reaktorkern in verschiedene Regionen eingeteilt mit jeweils unterschiedliche Charakteristika, repräsentiert durch einen Brennstab mit dem dazugehörigen Kühlkanal. Geeignete Anfangs- und Randbedingungen wurden betrachtet und 2 Szenarien mit Abschaltung von 4 und 2 Hauptkühlmittelpumpen bei abgeschaltetem Reaktor und zusätzlich ein Szenario mit Abschaltung aller 4 Pumpen bei nicht abgeschaltetem Reaktor wurden analysiert. Für jede Transiente wurde ein vollständiger Satz thermohydraulischer Parameter erhalten. Zur Verifikation des vorgeschlagenen Modells wurden die Ergebnisse mit denen des RELAP5/MOD3-Codes und dem Sicherheitsbericht (FSAR) des Kernkraftwerks Bushehr verglichen. Für die Transienten wurde eine gute Übereinstimmung der Ergebnisse erhalten.


* E-mail:

References

1 Hibiki, T.; Ishii, M.: One-Dimensional Drift–Flux Model for Two-Phase Flow in a Large Diameter Pipe. International Journal of Heat and Mass Transfer46 (2003) 177310.1016/S0017-9310(02)00473-8Search in Google Scholar

2 Amato, S.; Frogheri, M.; Monasterolo, U.: Analysis of Loss of Flow Transients in the VVER-1000 Reactor Plant Analyzer. 2nd Regional Meeting: nuclear energy in central Europe, Slovenia, (1995)Search in Google Scholar

3 Noori-Kalkhoran, O.; Minuchehr, A.; Shirani, A. S.; Rahgoshay, M.: Full Scope Thermal-Neutronic Analysis of LOFA in a WWER-1000 Reactor Core by Coupling PARCS v2.7 and COBRA-EN. Progress in Nuclear Energy74 (2014) 193 10.1016/j.pnucene.2014.03.006Search in Google Scholar

4 Zuber, N.; Findlay, J. A.: Average Volumetric Concentration in Two-Phase Flow Systems. ASME Journal of Heat Transfer87 (1965) 45310.1115/1.3689137Search in Google Scholar

5 Talebi, S.; Kazeminejad, H.; Davilu, H.: A Numerical Technique for Analysis of Transient Two-Phase Flow in a Vertical Tube Using the Drift Flux Model. Nuclear Engineering and Design242 (2012) 31610.1016/j.nucengdes.2011.10.038Search in Google Scholar

6 Gun, L. Y.; Park, G. C.: TAPINS: A Thermal-Hydraulic System Code for Transient Analysis of a Fully Passive Integral PWR. Nuclear Engineering and Technology45 (2013) 43910.5516/NET.02.2013.025Search in Google Scholar

7 Grudev, P.; Pavlova, M.: Simulation of Loss-of-Flow Transient in a VVER-1000 Nuclear Power Plant with RELAP5/MOD3.2. Progress in Nuclear Energy45 (2004) 1 10.1016/j.pnucene.2004.08.001Search in Google Scholar

8 Choi, K. Y.; Yun, B. J.; Park, H. S.; Kim, H. D.; Kim, Y. S.; Lee, K. Y.; Kim, K. D.: Development of a Wall-to-Fluid Heat Transfer Package for the Space Code. Nuclear Engineering and Technology41 (2009) 114310.5516/NET.2009.41.9.1143Search in Google Scholar

9 Hibiki, T. M.; Ishii, M.: One-Dimensional Drift-Flux Model and Constitutive Equations for Relative Motion between Phases in Various Two-Phase Flow Regimes. International Journal of Heat and Mass Transfer46 (2003) 493510.1016/S0017-9310(02)00473-8Search in Google Scholar

10 Ishii, M.; Hibiki, T.: Thermo-Fluid Dynamics of Two-Phase Flow. Springer, 200610.1007/978-0-387-29187-1Search in Google Scholar

11 El-Wakil, M. M.: Nuclear Heat Transport. American Nuclear Society, La Grange Park1, 1993Search in Google Scholar

12 Coddington, P.; Macian, R.: A Study of the Performance of Void Fraction Correlations Used in the Context of Drift-Flux Two-Phase Flow Models. Nuclear Engineering and Design215 (2002) 19921610.1016/S0029-5493(01)00503-9Search in Google Scholar

13 Schlegel, J.; Hibiki, T.; Ishii, M.: Development of a Comprehensive Set of Drift-Flux Constitutive Models for Pipes of Various Hydraulic Diameters. Progress in Nuclear Energy52 (2010) 66610.1016/j.pnucene.2010.03.007Search in Google Scholar

14 Dittus, F. W.; Boelter, L. M.K.: University of California, Berkeley, Publ. Eng, 2:443, 1930Search in Google Scholar

15 Chen, J. C.: A Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow. ASME paper 63- HT-34, (1963)10.2172/4636495Search in Google Scholar

16 Basile, D.; Beghi, M. R., Chierici, R.; Salina, E.; Brega, E.: COBRA-EN: an Upgraded Version of the COBRA-3C/MIT Code for Thermal Hydraulic Transient Analysis of Light Water Reactor Fuel Assemblies and Cores. ENELCRTN, Milano (1999)Search in Google Scholar

17 Todreas, N. E.; Kazimi, M. S.: Nuclear System: Thermal Hydraulic Fundamentals. Hemisphere Publishing Corporation, 1990Search in Google Scholar

18 Hari, H.; Hassan, Y. A.: Improvement of the Subcooled Boiling Model for Low-Pressure Conditions in Thermal-Hydraulic Codes. Nuclear Engineering and Design216 (2002) 13910.1016/S0029-5493(02)00050-XSearch in Google Scholar

19 Wagner, W.; Kruse, A.: the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for other Properties, Springer, Heidelberg, Germany, 1997Search in Google Scholar

20 International atomic energy agency (IAEA), Thermophysical Properties of Materials for Water-Cooled Reactors, IAEA-TECDOC-949, 1997Search in Google Scholar

21 Atomic Energy Organization of Iran (AEOI), Final Safety Analysis Report (FSAR) for Bushehr VVER-1000 reactor. Iran, Chapter 15, (2003)Search in Google Scholar

22 The RELAP5 Code Development Team, RELAP5/MOD3 Code Manual, NUREG/CR-5535, Science tech, Inc., Idaho Falls, 1999Search in Google Scholar

Received: 2016-02-07
Published Online: 2017-04-18
Published in Print: 2017-03-16

© 2017, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Technical Contributions/Fachbeiträge
  6. CANDU pressure tube leak detection by annulus gas dew point measurement: a critical review
  7. Multiple regression approach to predict turbine-generator output for Chinshan nuclear power plant
  8. 10.3139/124.110675
  9. Development of a parallel processing couple for calculations of control rod worth in terms of burn-up in a WWER-1000 reactor
  10. Simulation of protected and unprotected loss of flow transients in a WWER-1000 reactor based on the Drift-Flux Model
  11. Sensitivity analysis for CORSOR models simulating fission product release in LOFT-LP-FP-2 severe accident experiment
  12. Analysis of the optimal fuel composition for the Indonesian experimental power reactor
  13. Radiogenic lead from poly-metallic thorium ores as a valuable material for advanced nuclear facilities
  14. The effects of applying silicon carbide coating on core reactivity of pebble-bed HTR in water ingress accident
  15. Font Attributes based Text Steganographic algorithm (FATS) for communicating images: A nuclear power plant perspective
  16. Size control synthesis and characterization of ZnO nanoparticles and its application as ZnO-water based nanofluid in heat transfer enhancement in light water nuclear reactor
  17. Nuclear characteristics of epoxy resin as a space environment neutron shielding
  18. Exact solution of the neutron transport equation in spherical geometry
  19. Technical Notes/Technische Mitteilungen
  20. Determination of self-attenuation correction factor for lichen samples by using gamma-ray spectrometry
Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110616/html
Scroll to top button