Home Technology Size control synthesis and characterization of ZnO nanoparticles and its application as ZnO-water based nanofluid in heat transfer enhancement in light water nuclear reactor
Article
Licensed
Unlicensed Requires Authentication

Size control synthesis and characterization of ZnO nanoparticles and its application as ZnO-water based nanofluid in heat transfer enhancement in light water nuclear reactor

  • D. Sharma and K. M. Pandey
Published/Copyright: April 18, 2017
Become an author with De Gruyter Brill

Abstract

A novel and facile approach for size-tunable synthesis of ZnO nanoparticle (NPs) is reported. Size-tuning was attained by using PEG (polyethylene glycol) of molecular weights 400 and 4 000. ZnO NPs was synthesized using homogeneous chemical precipitation followed by hydrothermal. Here triethylamine (TEA) was used as a hydroxylating agent. As-synthesized ZnO NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and Energy Dispersive Spectroscopy (EDS) analysis. Synthesized ZnO nanoparticle was used for the preparation of ZnO-water based nanofluid and its application in heat transfer enhancement in light water nuclear reactor. In this work, ZnO-water based nanofluid of different volume concentration (1 percnt;, 2 percnt; and 3 percnt;) and particle size of 10 nm and 20 nm is used for enhancement in heat transfer in annular channel by using two phase approach. The particle size of 10 nm gives better result for enhancing the heat transfer rate in comparison to 20 nm particle size in nuclear reactor.

Kurzfassung

Über einen neuen Ansatz für Größen-einstellbare Synthese von ZnO-Nanopartikeln (NPs) wird berichtet. Größeneinstellung wurde erreicht durch Verwendung von PEG (Polyäthylenglykol) mit einem Molekulargewicht von 400 und 4 000. ZnO-NPs wurden synthetisiert mit Hilfe homogener chemischer Abscheidung gefolgt von hydrothermaler. Dabei wurde Triäthylamin (TEA) als Hydroxylierungsmittel verwendet. As-synthesierte ZnO-NPs wurden charakterisiert durch Röntgenbeugung (XRD), Transmissionelektronenmikroskopie (TEM) und Energiedispersive Röntgenspektroskopie (EDS). Synthetisierte ZnO-Nanopartikel wurden für die Vorbereitung ZnO-haltiger Nanofluide und deren Anwendung bei der Erhöhung der Wärmeübertragung bei Leichtwasserreaktoren verwendet. Im vorliegenden Beitrag wurden ZnO-haltige Nanofluide verschiedener Volumenkonzentration (1 percnt;, 2 percnt; und 3 percnt;) und Partikelgröße von 10 nm und 20 nm verwendet für die Erhöhung der Wärmeübertragung im Ringkanal mit Hilfe eines zwei-Phasen-Ansatzes. Eine Partikelgröße von 10 nm führt zu besseren Ergebnissen in Bezug auf die Erhöhung der Wärmeübertragungsrate in Kernreaktoren als Partikelgrößen von 20 nm.


* Corresponding author: E-mail: ;

References

1 Liu, C.; Yang, D.; Jiao, Y.; Tian, Y.; Wang, Y.; Jiang, Z.: Biomimetic synthesis of TiO2–SiO2–Ag nanocomposites with enhanced visible-light photocatalytic activity. ACS Appl. Mater. Interfaces5 (2013) 3824383210.1021/am4004733Search in Google Scholar PubMed

2 Gacia, P.; Shrestha, L. K.; Bairi, P.; Noelia Maria, S. B.; Hill, J.; Boczkowska, A.; Abe, H.; Ariga, K.: Low-Temperature Synthesis of Copper oxide (CuO) Nanostructures with Temperature-Controlled Morphological Variations. Ceram. Int.41 (2015) 94233210.1016/j.ceramint.2015.03.323Search in Google Scholar

3 Lee, S.; Jeon, C.; Park, Y.: Fabrication of TiO2 Tubules by Template Synthesis and Hydrolysis with Water Vapor. Chem. Mater.16 (2004) 4292429510.1021/cm049466xSearch in Google Scholar

4 Ahmad, R.; Tripathy, N.; Jung, D. U.; Hahn, Y. B.: Highly sensitive hydrazine chemical sensor based on ZnO nanorods field-effect transistor. Chem Commun40 (2014) 1890189310.1039/c3cc48197bSearch in Google Scholar PubMed

5 Hua, G.; Zhang, Y.; Zhang, J.; Cao, X.; Xu, W.; Zhang, L.: Mate Letters62 (2008) 41091110.1016/j.matlet.2008.06.018Search in Google Scholar

6 Tripathy, N.; Ahmad, R.; EunSong, J.; AhKo, H.; Hahn, Y. B.; Khang, G.: Photocatalytic degradation of methyl orange dye by ZnO nano needle under UV irradiation. Materials Letters136 (2014) 17117410.1016/j.matlet.2014.08.064Search in Google Scholar

7 Ghomi, J. S.; Ghasemzadeh, M. A.: Zinc oxide nanoparticles: A highly efficient and readily recyclable catalyst for the synthesis of xanthenes. Chinese Chemical Letters23 (2012) 1225122910.1016/j.cclet.2012.09.016Search in Google Scholar

8 Kołodziejczak-Radzimska, A.; Jesionowski, T.: Zinc Oxide–From Synthesis to Application: A Review Materials7 (2014) 28332881Search in Google Scholar

9 Paul, B.; Bhuyan, B.; Purkayastha, D. D.; Dhar, S. S.: Facile synthesis of α-Fe2O3 nanoparticles and their catalytic activity in oxidation of benzyl alcohols with periodic acid. Catal. Comm.69 (2015) 485410.1016/j.catcom.2015.05.017Search in Google Scholar

10 Wen, D.; Ding, Y.: Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer47 (2004) 5181518810.1016/j.ijheatmasstransfer.2004.07.012Search in Google Scholar

11 Bianco, V.; Chiacchio, F.; Manca, O.; Nardini, S.: Numerical investigation of nanofluids forced convection in circular tubes. Applied Thermal Engineering29 (2009) 3632364210.1016/j.applthermaleng.2009.06.019Search in Google Scholar

12 Demir, H.; Dalkilic, A. S.; Kurekci, N. A.; Duangthongsuk, W.; Wongwises, S.: Numerical investigation on the single phase forced convection heat transfer characteristics of TiO2 nanofluids in a double-tube counter flow heat exchanger. International Communications in Heat & Mass Transfer38 (2011) 21822810.1016/j.icheatmasstransfer.2010.12.009Search in Google Scholar

13 Kumar, P. A.: CFD Study of Heat Transfer Enhancement in Pipe Flow with Al2O3 Nanofluid. World Academy of Science81 (2011) 746750Search in Google Scholar

14 Heris, S. Z.; Etemad, S. G.; Esfahany, M. N.: Experimental investigation of oxide nanofluids laminar flow convective heat transfer. International Communications in Heat and Mass Transfer33 (2006) 52953510.1016/j.icheatmasstransfer.2006.01.005Search in Google Scholar

15 Namburu, P. K.; Das, D. K.; Tanguturi, K. M.; Vajjha, R. S.: Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties. International Journal of Thermal Sciences48 (2009) 29030210.1016/j.ijthermalsci.2008.01.001Search in Google Scholar

16 Hwang, K. S.; Jang, S. K.; Choi, S. U. S.: Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime. International Journal of Heat and Mass Transfer52 (2009) 19319910.1016/j.ijheatmasstransfer.2008.06.032Search in Google Scholar

17 Sharifi, A. M.; Emamzadeh, A.; Hamidi, A. A.; Farzaneh, H.; Rastgarpour, M.: Computer- Aided Simulation of Heat Transfer in Nanofluids. Proceedings of the International Multi Conference of Engineers and Computer scientists, Hong Kong (2012)Search in Google Scholar

18 Kim, D.; Kwon, Y.; Cho, Y.; Li, C.; Cheong, S.; Hwang, Y.; Lee, J.; Hong, D.; Moon, S.: Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions, Current Applied Physics9 (2009) 11912310.1016/j.cap.2008.12.047Search in Google Scholar

19 Maiga, S. E. B.; Nguyen, C. T.; Galanis,N.; Roy,G.; Mare,T.; Coqueux,M.: Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension. International Journal of Numerical Methods for Heat & Fluid Flow16 (3) (2006) 27529210.1108/09615530610649717Search in Google Scholar

20 Izadi, M.; Behzadmehr, A.; Jalali-Vahida, D.: Numerical study of developing laminar forced convection of a nanofluid in an annulus. Int. J. Therm. Sci.48 (2009) 21192910.1016/j.ijthermalsci.2009.04.003Search in Google Scholar

21 Wang, X. Q.; Mujumdar, A. S.: Heat transfer characteristics of nanofluids: A review. Int. J. Therm. Sci.46 (1) (2007) 11910.1016/j.ijthermalsci.2006.06.010Search in Google Scholar

22 White, F. M.: Fluid Mechanics, fourth edition. McGraw-Hill, New York (1999)Search in Google Scholar

23 Corcione, M.: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manage.52 (1) (2011) 78979310.1016/j.enconman.2010.06.072Search in Google Scholar

Received: 2016-04-20
Published Online: 2017-04-18
Published in Print: 2017-03-16

© 2017, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Technical Contributions/Fachbeiträge
  6. CANDU pressure tube leak detection by annulus gas dew point measurement: a critical review
  7. Multiple regression approach to predict turbine-generator output for Chinshan nuclear power plant
  8. 10.3139/124.110675
  9. Development of a parallel processing couple for calculations of control rod worth in terms of burn-up in a WWER-1000 reactor
  10. Simulation of protected and unprotected loss of flow transients in a WWER-1000 reactor based on the Drift-Flux Model
  11. Sensitivity analysis for CORSOR models simulating fission product release in LOFT-LP-FP-2 severe accident experiment
  12. Analysis of the optimal fuel composition for the Indonesian experimental power reactor
  13. Radiogenic lead from poly-metallic thorium ores as a valuable material for advanced nuclear facilities
  14. The effects of applying silicon carbide coating on core reactivity of pebble-bed HTR in water ingress accident
  15. Font Attributes based Text Steganographic algorithm (FATS) for communicating images: A nuclear power plant perspective
  16. Size control synthesis and characterization of ZnO nanoparticles and its application as ZnO-water based nanofluid in heat transfer enhancement in light water nuclear reactor
  17. Nuclear characteristics of epoxy resin as a space environment neutron shielding
  18. Exact solution of the neutron transport equation in spherical geometry
  19. Technical Notes/Technische Mitteilungen
  20. Determination of self-attenuation correction factor for lichen samples by using gamma-ray spectrometry
Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110635/html
Scroll to top button