Home Technology Development of a parallel processing couple for calculations of control rod worth in terms of burn-up in a WWER-1000 reactor
Article
Licensed
Unlicensed Requires Authentication

Development of a parallel processing couple for calculations of control rod worth in terms of burn-up in a WWER-1000 reactor

  • O. Noori-Kalkhoran , R. Ahangari and A. S. Shirani
Published/Copyright: April 18, 2017
Become an author with De Gruyter Brill

Abstract

In this study a code based method has been developed for calculation of integral and differential control rod worth in terms of burn-up for a WWER-1000 reactor. Parallel processing of WIMSD-5B, PARCS V2.7 and COBRA-EN has been used for this purpose. WIMSD-5B has been used for cell calculation and handling burn-up of core at different days. PARCS V2.7 has been used for neutronic calculation of core and critical boron concentration search. Thermal-hydraulic calculation has been performed by COBRA-EN. A Parallel processing algorithm has been developed by MATLAB to couple and transfer suitable data between these codes in each step. Steady-State Power Picking Factors (PPFs) of the core and Control rod worth have been calculated from Beginning Of Cycle (BOC) to 289.7 Effective full Power Days (EFPDs) in some steps. Results have been compared with Bushehr Nuclear Power Plant (BNPP) Final Safety Analysis Report (FSAR) results. The results show great similarity and confirm the ability of developed coupling in calculation of control rod worth in terms of burn-up.

Kurzfassung

In dieser Studie wurde auf der Basis von Rechencodes eine Methode zur Berechnung der integralen und differentiellen Kennwerte von Steuerstäben bezüglich des Abbrands in einem WWER-1000-Reaktor entwickelt. Dazu wurde die parallele Weiterverarbeitung von WIMSD-5B, PARCS V2.7 und COBRA-EN-Rechencodes verwendet. Der WIMSD-5B-Code wurde für die Zellberechnung und die Behandlung des Abbrands des Kerns verwendet, der PARCS V2.7-Code für die Neutronenberechnung, der COBRA-EN-Code für die thermohydraulischen Berechnungen. Ein paralleler Verarbeitungsalgorithmus wurde von MATLAB zur Kopplung und zum Transfer von geeigneten Daten zwischen diesen Codes verwendet. Die Ergebnisse wurden verglichen mit den Ergebnissen des Final Safety Analysis Reports (FSAR) des Bushehr-Kernkraftwerks (BNPP). Es zeigt sich eine große Ähnlichkeit der Ergebnisse was die Leistungsfähigkeit der entwickelten Methode zur Berechnung der Kennwerte von Steuerstäben bezüglich des Abbrands zeigt.


* Corresponding Author Email Address:

References

1 Rahgoshay, M.; Noori-Kalkhoran, O.: Calculation of control rod worth and temperature reactivity coefficient of fuel and coolant with burn-up changes for VVRS-2 MWth nuclear reactor. Nucl. Eng. Des.256 (2013) 322–331 10.1016/j.nucengdes.2012.08.033Search in Google Scholar

2 Savva, P.; Varvayanni, M.; Catsaros, N.: Dependence of control rod worth on fuel burnup. Nucl. Eng. Des.241 (2011) 492–497 10.1016/j.nucengdes.2010.11.021Search in Google Scholar

3 Glasstone, S.; Sesonke, A.: Nuclear Reactor Engineering. Van Nostrand Reinhold Company Inc, New York, 1967Search in Google Scholar

4 Wang, G. B.; Ma, J. M.; Yuan, S.; Li, R. D.; Qian, D. Z.: Adjustment method of deterministic control rods worth computation based on measurements and auxiliary Monte Carlo runs. Ann. Nucl. Energy85 (2015) 18319210.1016/j.anucene.2015.05.005Search in Google Scholar

5 Muhammad, F.: Effects of high density dispersion fuel loading on the control rod worth of a low enriched uranium fueled material test research reactor. Ann. Nucl. Energy58 (2013) 192410.1016/j.anucene.2013.02.007Search in Google Scholar

6 Fadaei, A. H.; Setayeshi, S.: Control rod worth calculation for VVER-1000 nuclear reactor using WIMS and CITATION codes. Prog. Nucl. Enegy51 (2009) 18419110.1016/j.pnucene.2008.03.003Search in Google Scholar

7 Mahalakshmi, B.: New formulae for estimation of control rod worths in fast reactors. Ann. Nucl. Energy18 (1991) 253010.1016/0306-4549(91)90034-USearch in Google Scholar

8 Downar, T.; Xu, Y.; Kozlowski, T.; Carlson, D.: PARCS n2.7 US NRC Core Neutronics Simulator. School of Nuclear Engineering, Purdue University, W. Lafayette, Indiana, 2006Search in Google Scholar

9 Oak Ridge National Laboratory: A neutronic code for standard lattice physic analysis. NEA Data Bank, 1997Search in Google Scholar

10 Oak Ridge National Laboratory: Code System for Thermal-Hydraulic Transient Analysis of Light Water Reactor Fuel Assemblies and Cores. U.S. Department of Energy, USA, 2001Search in Google Scholar

11 Atomic Energy Organization of Iran (AEOI): Final Safety Analysis Report (FSAR) for Bushehr VVER-1000 reactor. Tehran, Iran, 2003Search in Google Scholar

Received: 2016-01-17
Published Online: 2017-04-18
Published in Print: 2017-03-16

© 2017, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Technical Contributions/Fachbeiträge
  6. CANDU pressure tube leak detection by annulus gas dew point measurement: a critical review
  7. Multiple regression approach to predict turbine-generator output for Chinshan nuclear power plant
  8. 10.3139/124.110675
  9. Development of a parallel processing couple for calculations of control rod worth in terms of burn-up in a WWER-1000 reactor
  10. Simulation of protected and unprotected loss of flow transients in a WWER-1000 reactor based on the Drift-Flux Model
  11. Sensitivity analysis for CORSOR models simulating fission product release in LOFT-LP-FP-2 severe accident experiment
  12. Analysis of the optimal fuel composition for the Indonesian experimental power reactor
  13. Radiogenic lead from poly-metallic thorium ores as a valuable material for advanced nuclear facilities
  14. The effects of applying silicon carbide coating on core reactivity of pebble-bed HTR in water ingress accident
  15. Font Attributes based Text Steganographic algorithm (FATS) for communicating images: A nuclear power plant perspective
  16. Size control synthesis and characterization of ZnO nanoparticles and its application as ZnO-water based nanofluid in heat transfer enhancement in light water nuclear reactor
  17. Nuclear characteristics of epoxy resin as a space environment neutron shielding
  18. Exact solution of the neutron transport equation in spherical geometry
  19. Technical Notes/Technische Mitteilungen
  20. Determination of self-attenuation correction factor for lichen samples by using gamma-ray spectrometry
Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110605/pdf
Scroll to top button