Development of a new analytic function expansion nodal code, HexDANM, for solving the neutron diffusion equation in hexagonal-Z geometry
-
M. H. Jalili Bahabadi
, A. Pazirandeh und M. Athari
Abstract
In this paper, we developed a new approach of analytic function expansion nodal (AFEN) method to solve the multi-group and multi-dimensional neutron diffusion equation in reactor cores with hexagonal fuel assembly. This method represents a multidimensional intra nodal flux distribution in terms of analytic basis functions at any points in the node. New types of boundary conditions have been considered that constrain the intranodal flux distributions in the hexagonal-z node, which include twelve radial surface-averaged partial currents and two axial surface-averaged partial currents. We utilized the coarse group rebalancing (CGR) method to increase the speed of code calculations. The computer code takes a few-groups cross sections produced by a lattice code and calculates the effective multiplication factor (keff), flux in multi-group energy, reactivity, and the relative power density at each fuel assembly. Finally, the solution accuracy is tested for two well-known benchmark problems. The numerical results demonstrate that the new AFEN method is an accurate method for calculating keff and power density distribution in hexagonal-z geometries.
Kurzfassung
In diesem Beitrag wird die Entwicklung eines neuen nodaler Ansatzes der AFEN Methode zur Lösung der multi-dimensionalen Neutronendiffusionsgleichung in Reaktorkernen mit hexagonaler Brennelementanordnung beschrieben. Die Methode stellt eine multi-dimensionale intra-nodale Flussverteilung in Form analytischer Funktionen dar. Neue Arten von Randbedingungen wurden betrachtet, die die intra-nodalen Flussverteilungen im hexagonalen z-Node beschränken. Die Coarse Group Rebalancing (CGR) Methode zur Erhöhung der Rechen-Geschwindigkeit wurde verwendet. Der Rechen-Code verwendet die von einem Gitter-Code erzeugten Wirkungsquerschnitte und berechnet den effektiven Multiplikationsfaktor (keff), den Fluss in Multi-Gruppen-Energie, die Reaktivität, und die relative Leistungsdichte bei jeder Brennelementanordnung. Schließlich wird die Lösungsgenauigkeit getestet für zwei bekannte Benchmarkprobleme. Die numerischen Ergebnisse zeigen, dass die neue AFEN Methode eine genaue Methode zur Berechnung von keff und der Leistungsdichteverteilung in hexagonaler-z Geometrie ist.
References
1 Duderstadt, J. J.; Hamilton, L. J.: Nuclear reactor analysis. New York: Jone Wiley & Sons (1976)Suche in Google Scholar
2 Stacey, W. M.: Nuclear Reactor Physics. New York: John Wiley & Sons Inc (2007) 10.1002/9783527611041Suche in Google Scholar
3 Chao, Y. A.; Tsolfanidis, N.: Conformal mapping and hexagonal nodal methods – I: mathematical foundation. Nucl. Sci. Eng.121 (1995) 202–20910.13182/NSE95-A28558Suche in Google Scholar
4 Chao, Y. A.; Shatilla, Y. A.: Conformal mapping and hexagonal nodal methods – II: implementation in the ANC-H code. Nucl. Sci. Eng.121 (1995) 210–22510.13182/NSE95-A28559Suche in Google Scholar
5 Cho, N. Z.; Noh, J. M.: The AFEN method for hexagonal nodal calculation and reconstruction. Trans. Am. Nucl. Soc.71 (1994) 466–468Suche in Google Scholar
6 Cho, N. Z.; Noh, J. M.: Analytic function expansion nodal method for hexagonal geometry. Nucl. Sci. Eng.121 (1995) 245–25310.13182/NSE95-A28561Suche in Google Scholar
7 Cho, N. Z.; Kim, Y. H., Park, K. W.: Extension of analytic function expansion nodal method to multigroup problems in hexagonal-z geometry. Nucl. Sci. Eng.126 (1997) 35–4710.13182/NSE97-A24455Suche in Google Scholar
8 Cho, N. Z.; Lee, J.: Analytic Function Expansion Nodal (AFEN) Method in Hexagonal-Z Three-Dimensional Geometry for Neutron Diffusion Calculation. Journal of Nuclear Science and Technology43 (2006) 1320–132610.1080/18811248.2006.9711226Suche in Google Scholar
9 Noh, J. M.; Cho, N. Z.: A multigroup diffusion nodal scheme in rectangular and hexagonal geometry: hybrid of AFEN and PEN methods. In Proceedings of the International Conference on the Physics of Reactor (PHYSOR 96), Vol.1, Mito, Ibaraki, Japan, 16–20 September 1996. Atomic Energy Society of Japan, pp. A50–A59Suche in Google Scholar
10 Jalili, M. H.; Pazirandeh, A.; Athari, M.: New analytic function expansion nodal (AFEN) method for solving multigroup neutron simplified P3 equation. Ann. Nucl. Eng.77 (2015) 148–16010.1016/j.anucene.2014.11.012Suche in Google Scholar
11 Xia, B.; Xie, Z.: Flux expansion nodal method for solving multigroup neutron diffusion equations in hexagonal- z geometry. Ann. Nucl. Energy33 (2006) 370–37610.1016/j.anucene.2005.06.011Suche in Google Scholar
12 Mohammadnia, M.; Pazirandeh, A.; Sedighi, M.: Development of a computer code for neutronic calculations of a hexagonal lattice of nuclear reactor using the flux expansion nodal method. Nuclear Technology & Radiation Protection28 (2013) 273–24810.2298/NTRP1303237MSuche in Google Scholar
13 Kim, D. S.; Cho, N. Z.: Acceleration of Three-Dimensional AFEN Nodal Codes via Coarse Group Rebalance and Direct Matrix Inverse. Proc. Int. Conf. Mathematics and Computation, Reactor Physics and Environmental Analysis in Nuclear Applications, Madrid, Spain, September 27–30, 1999, p. 168Suche in Google Scholar
14 González-Pintor, S.; Verdú,G.; Ginestar, D.: Spectral element method for the neutron diffusion equation a triangular mesh. In International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009) Saratoga Springs, New York, on CD-ROM, American Nuclear Society, LaGrange Park, ILSuche in Google Scholar
15 Kolev, N. P. (IAE); Lenain, R.; Magnaud, C.: AER Benchmark Specification Sheet, (1999). Available in http://aerbench.kfki.hu/aerbench/.Suche in Google Scholar
16 Kolev, N. P.; Lenain, R.; Fedon-Magnaud, C.: CRONOS Solutions of the AER 3D Benchmark for VVER-1000, CEA Internal Report, Saclay, (1997)Suche in Google Scholar
© 2015, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Considering the uncertainties in empirical correlations for vertical countercurrent flow limitation (CCFL) with TRACE
- 3RIP trip startup test simulation of TRACE/PARCS model for Lungmen ABWR under different power and flow conditions
- Development of a new analytic function expansion nodal code, HexDANM, for solving the neutron diffusion equation in hexagonal-Z geometry
- Laser cleaning of steam generator tubing based on acoustic emission technology
- Axial enrichment profile in advance nuclear energy power plant at supercritical-pressures
- Analysis of the small break loss of coolant accident in the VVER-1000/V446 reactor
- Thermal hydraulic analysis of reactivity accidents in MTR research reactors using RELAP5
- Depletion of Gadolinium burnable poison in a PWR assembly with high burnup fuel
- Nuclear model calculations on cyclotron production of 51Cr
- Radiotracer application for characterization of nuclear grade anion exchange resins Tulsion A-23 and Dowex SBR LC
- Solving the criticality problem with the reflected boundary condition for the triplet anisotropic scattering with the modified FN method
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Considering the uncertainties in empirical correlations for vertical countercurrent flow limitation (CCFL) with TRACE
- 3RIP trip startup test simulation of TRACE/PARCS model for Lungmen ABWR under different power and flow conditions
- Development of a new analytic function expansion nodal code, HexDANM, for solving the neutron diffusion equation in hexagonal-Z geometry
- Laser cleaning of steam generator tubing based on acoustic emission technology
- Axial enrichment profile in advance nuclear energy power plant at supercritical-pressures
- Analysis of the small break loss of coolant accident in the VVER-1000/V446 reactor
- Thermal hydraulic analysis of reactivity accidents in MTR research reactors using RELAP5
- Depletion of Gadolinium burnable poison in a PWR assembly with high burnup fuel
- Nuclear model calculations on cyclotron production of 51Cr
- Radiotracer application for characterization of nuclear grade anion exchange resins Tulsion A-23 and Dowex SBR LC
- Solving the criticality problem with the reflected boundary condition for the triplet anisotropic scattering with the modified FN method