Thermal hydraulic analysis of reactivity accidents in MTR research reactors using RELAP5
-
N. El-Sahlamy
, A. Khedr and F. D’Auria
Abstract
The present paper comes in the line with the international approach which use the best estimate codes, instead of conservative codes, to get more realistic prediction of system behavior under off-normal reactor conditions. The aim of the current work is to apply this approach using the thermal-hydraulic system code RELAP5/Mod3.3 in a reassessment of safety of the IAEA benchmark 10 MW Research Reactor. The assessment is performed for both slow and fast reactivity insertion transients at initial power of 1.0 W. The reactor power is calculated using the RELA5 point kinetic model. The reactivity feedback terms are considered in two steps. In the first step the feedback from changes in water density and fuel temperature (Doppler effects) are considered. In the second step the feedback from the water temperature changes is added. The results from the first step are compared with that published in IAEA-TECDOC-643 benchmarks. The comparison shows that RELAP5 over predicts the peak power and consequently the fuel, clad and coolant temperatures in case of fast reactivity insertion. The results from the second step show unjustified values for reactor power. Therefore, the model of reactivity feedback from water temperature changes in the RELAP5 code may have to be reviewed.
Kurzfassung
Der vorliegende Beitrag verwendet, wie international üblich, Best-Estimate-Codes anstelle konservativer Codes, um realistischere Vorhersagen des Systemverhaltens unter abnormen Betriebszuständen machen zu können. Ziel dieser Arbeit ist die Anwendung des thermohydraulischen Systemcodes RELAP5/Mod3.3 bei der Neubewertung der IAEA-Benchmark-Vorgaben für die Sicherheit von 10 MW Forschungsreaktoren. Die Bewertung wird durchgeführt für langsame und schnelle Reaktivitätsinsertion bei einer Anfangsleistung von 1.0 W. Die Reaktorleistung wird berechnet mit Hilfe des RELAP5-punktkinetischen Models. Die Reaktivitätsrückwirkungen wurden in zwei Schritten betrachtet. Im ersten Schritt wurden Rückwirkungen durch Änderungen der Wasserdichte und Brennstofftemperatur betrachtet (Doppler-Effekt). Im zweiten Schritt wurden zusätzlich die Rückwirkungen durch Änderungen der Wassertemperatur berücksichtigt. Die Ergebnisse des ersten Schritts wurden verglichen mit den im IAEA-TECDOC-643 veröffentlichten Benchmark-Vorgaben. Der Vergleich zeigt, dass die Ergebnisse von RELAP5 die Leistungsspitzen überschätzt und damit die Temperaturen von Brennstoff, Hülle und Kühlmittel im Falle schneller Reaktivitätsinsertion. Die Ergebnisse des zweiten Schritts zeigen nicht gerechtfertigte Werte für die Reaktorleistung. Deshalb sollte das Modell der Reaktivitätsrückwirkungen durch Änderungen der Wassertemperatur beim RELAP5-Code überarbeitet werden.
References
1 Mirza, A. M.; Khanam, S.; Mirza, N. M.: Simulation of Reactivity Transients in Current MTRs. Ann. Nucl, Energy25 (1998) 1465–148410.1016/S0306-4549(98)00020-6Search in Google Scholar
2 Di Maro, B.; Pierro, F.; Adorni, M.; Bousbia Salah, A.; D'Auria, F.: Safety analysis of Loss of Flow Transients in a Typical Research Reactor by RELAP5/MOD3.3. Proc. Int. Conference “Nuclear energy for new Europe 2003”, Portorož, Slovenia, September 8–11, 2003Search in Google Scholar
3 Hamidouche, T.; Bousbia-Salah, A.; Adorni, M.; D'Auria, F.: Dynamic Calculations of the IAEA Safety MTR Research Reactor Benchmark Problem using RELAP5/3.2 Code. Annals of Nuclear Energy, vol. 31, pp. 1385–1402, 200410.1016/j.anucene.2004.03.008Search in Google Scholar
4 Khedr, A.; Adorni, M.; D'Auria, F.: The Effect of Code User and Boundary Conditions on RELAP Calculations of MTR Research Reactor Transient Scenarios. Nuclear Technology & Radiation Protection1 (2005) 16–2210.2298/NTRP0501016KSearch in Google Scholar
5 Khedr, A.; D'Auria, F.: Nodalization Effects on RELAP5 Results Related to MTR Research Reactor Transient Scenarios. Nuclear Technology & Radiation Protection,2 (2005) 3–910.2298/NTRP0502003KSearch in Google Scholar
6 Adorni, M.; Bousbia-salah, A.; D'Auria, F.; Hamidouche, T.: Application of Best Estimate Thermalhydraulic Codes for the Safety Analysis of Research Reactors, Proc. Int. Conference “Nuclear Energy for New Europe 2006”, Portorož, Slovenia, September 18–21, 2006Search in Google Scholar
7 Omar, H.; Ghazi, N.; Alhabit, F.; Hainoun, A.: Thermal hydraulic analysis of Syrian MNSR research reactor using RELAP5/Mode3.2 code. Annals of Nuclear Energy37 (2010) 572–58110.1016/j.anucene.2009.12.021Search in Google Scholar
8 IAEA Research Reactor Core Conversion from the use of high-enriched uranium to the use of low enriched uranium fuels Guidebook. IAEA-TECDOC-233, 1980Search in Google Scholar
9 IAEA Research Reactor Core Conversion Guidebook, Volume-3: Analytical Verification. IAEATECDOC-643, 1990Search in Google Scholar
10 RELAP5/MOD3.3 Code Manual, Vol IV: Models and Correlations, December 2001Search in Google Scholar
© 2015, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Considering the uncertainties in empirical correlations for vertical countercurrent flow limitation (CCFL) with TRACE
- 3RIP trip startup test simulation of TRACE/PARCS model for Lungmen ABWR under different power and flow conditions
- Development of a new analytic function expansion nodal code, HexDANM, for solving the neutron diffusion equation in hexagonal-Z geometry
- Laser cleaning of steam generator tubing based on acoustic emission technology
- Axial enrichment profile in advance nuclear energy power plant at supercritical-pressures
- Analysis of the small break loss of coolant accident in the VVER-1000/V446 reactor
- Thermal hydraulic analysis of reactivity accidents in MTR research reactors using RELAP5
- Depletion of Gadolinium burnable poison in a PWR assembly with high burnup fuel
- Nuclear model calculations on cyclotron production of 51Cr
- Radiotracer application for characterization of nuclear grade anion exchange resins Tulsion A-23 and Dowex SBR LC
- Solving the criticality problem with the reflected boundary condition for the triplet anisotropic scattering with the modified FN method
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Considering the uncertainties in empirical correlations for vertical countercurrent flow limitation (CCFL) with TRACE
- 3RIP trip startup test simulation of TRACE/PARCS model for Lungmen ABWR under different power and flow conditions
- Development of a new analytic function expansion nodal code, HexDANM, for solving the neutron diffusion equation in hexagonal-Z geometry
- Laser cleaning of steam generator tubing based on acoustic emission technology
- Axial enrichment profile in advance nuclear energy power plant at supercritical-pressures
- Analysis of the small break loss of coolant accident in the VVER-1000/V446 reactor
- Thermal hydraulic analysis of reactivity accidents in MTR research reactors using RELAP5
- Depletion of Gadolinium burnable poison in a PWR assembly with high burnup fuel
- Nuclear model calculations on cyclotron production of 51Cr
- Radiotracer application for characterization of nuclear grade anion exchange resins Tulsion A-23 and Dowex SBR LC
- Solving the criticality problem with the reflected boundary condition for the triplet anisotropic scattering with the modified FN method