Home Technology Depletion of Gadolinium burnable poison in a PWR assembly with high burnup fuel
Article
Licensed
Unlicensed Requires Authentication

Depletion of Gadolinium burnable poison in a PWR assembly with high burnup fuel

  • R. M. Refeat
Published/Copyright: December 12, 2015
Become an author with De Gruyter Brill

Abstract

A tendency to increase the discharge burnup of nuclear fuel for Advanced Pressurized Water Reactors (PWR) has been a characteristic of its operation for many years. It will be able to burn at very high burnup of about 70 GWd/t with UO2 fuels. The U-235 enrichment must be higher than 5 %, which leads to the necessity of using an extremely efficient burnable poison like Gadolinium oxide. Using gadolinium isotope is significant due to its particular depletion behavior (“Onion-Skin” effect). In this paper, the MCNPX2.7 code is used to calculate the important neutronic parameters of the next generation fuels of PWR. K-infinity, local peaking factor and fission rate distributions are calculated for a PWR assembly which burn at very high burnup reaching 70 GWd/t. The calculations are performed using the recently released evaluated Gadolinium cross section data. The results obtained are close to those of a LWR next generation fuel benchmark problem. This demonstrates that the calculation scheme used is able to accurately model a PWR assembly that operates at high burnup values.

Kurzfassung

Die Tendenz zur Erhöhung des Abbrands der Kernbrennelemente fortschrittlicher Druckwasserreaktoren (DWR) ist seit vielen Jahren ein charakteristisches Merkmal beim Betrieb. Der Hochabbrand dieser Reaktoren liegt bei 70 GWd/t mit UO2 als Brennstoff. Die U-235-Anreicherung muss höher sein als 5 %, was zur Verwendung von extrem effizienten Reaktorgiften führt, wie z. B. Gadoliniumoxid. Die Verwendung von Gadolinium ist interessant aufgrund seines besonderen Abreicherungsverhaltens (“Onion-Skin” Effekt). In diesem Beitrag wurde der MCNPX2.7 Code verwendet um wichtige Neutronen-Parameter der Brennstoffe der nächsten Generation der DWR zu berechnen. K-Unendlich, lokaler Überhöhungsfaktor und Spaltratenverteilungen wurden für eine DWR-Anordnung berechnet, die einen sehr hohen Abbrand von bis zu 70 GWd/t erreicht. Die Berechnungen wurden mit den kürzlich freigegebenen Wirkungsquerschnittsdaten von Gadolinium durchgeführt. Die erhaltenen Ergebnisse liegen nahe an denen für einen Brennstoff-Bezugswert für LWR der nächsten Generation. Dies zeigt, dass das verwendete Berechnungsschema eine genaue Modellierung der DWR-Anordnung mit hohem Abbrand ermöglicht.


* E-mail:

References

1 Yamamoto, A. et al.: Benchmark Problem Suite for Reactor Physics Study of LWR Next Generation Fuels. Journal of Nuclear Science and Technology39 (2002) 90091210.1080/18811248.2002.9715275Search in Google Scholar

2 Kitada, T. et al.: Analysis of the Benchmark Results for Reactor Physics of LWR Next Generation Fuels. Proc. Int'l. Conf. on the Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments (PHYSOR2004), April 2004Search in Google Scholar

3 Okumura, K. et al.: Benchmark Results of Burn-up Calculations for LWR Next Generation Fuels. Proc. Int'l. Conf. on the New Frontiers of Nuclear technology: Reactor Physics, Safety and High-Performance Computing (PHYSOR2002), October 2002Search in Google Scholar

4 MCNP/MCNPX Monte Carlo N-Particle Transport Code System. CCC-730, Los Alamos National Laboratory, January 2006Search in Google Scholar

5 Pelowitz, D. B. et al.: MCNPX2.7.0 Extensions. LA-UR-11-02295, Los Alamos National Laboratory, April 2011Search in Google Scholar

6 Hendricks, J. S. et al.: ENDF/B-VI Data for MCNP. LA-12891, Los Alamos National Laboratory, December 199410.2172/10119302Search in Google Scholar

7 Chadwick, M. B. et al.: ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariance, Fission Product Yields and Decay Data. Nuclear Data Sheets112, (2011) 2887299610.1016/j.nds.2011.11.002Search in Google Scholar

8 http://hachi.tokai.jaeri.go.jp/Committee/LWR-benchmark/Search in Google Scholar

9 Cacuci, D. G.: Handbook of Nuclear Engineering. Volume I, Springer Science+Business Media, 201010.1007/978-0-387-98149-9Search in Google Scholar

Received: 2015-06-10
Published Online: 2015-12-12
Published in Print: 2015-12-17

© 2015, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110549/pdf
Scroll to top button